Branche complémentaire CI 2021-2022

par Thierry Chappuis, Michal Dabros, Véronique Breguet-Mercier et Ludovic Gremaud Haute école d'ingénierie et d'architecture Fribourg (HEIA-FR)

1. Présentation

La branche complémentaire « Chimie industrielle » (BCo. CI) permet un approfondissement des connaissances dans le domaine de la production chimique industrielle. Cette branche propose, d'un point de vue théorique, quatre thématiques principales : le génie des procédés, le génie chimique et la régulation automatique. Le programme comporte également des travaux pratiques appuyant les différentes notions vues dans le cadre de la partie théorique.

2. Plan et dotation

La BCo. « Chimie industrielle » est composée de différentes unités d'enseignement :

- Deuxième année:
- Génie chimique 1 (automne) & 2 (printemps) avec Prof. Michal Dabros
- Génie des procédés 1 (automne) & 2 (printemps) avec Profs. Breguet-Mercier et Gremaud
- Régulation 1 (automne) & 2 (printemps) avec Prof. Michal Dabros
- Troisième année:
- - Génie chimique 3 (automne) & 4 (printemps) avec Prof. Thierry Chappuis
- Génie des procédés 3 (automne) & 4 (printemps) avec Profs. Breguet-Mercier et Gremaud
- Laboratoire de chimie industrielle (toute l'année)

À la fin de la troisième année, l'étudiant-e passe un examen oral sur le contenu de tous les cours cidessus ainsi que sur les connaissances pratiques acquises durant le laboratoire. L'étudiant-e obtient **30 crédits ECTS** si sa participation aux cours et aux laboratoires est jugée satisfaisante et s'il/elle réussit l'examen.

3. Contenu des unités d'enseignement

Les descriptifs des cours et du laboratoire sont inclus sur les pages qui suivent.

Génie chimique 1

Pondération dans le module	2.0	Langue d'enseignement	F
Année de validitée	2020-2021	Identifiant du cours	B2C-CGC1-C
Année du plan d'études	2 ^e année	Niveau	intermédiaire
Semestre	automne	Type de cours	fondamental
Programme	français, bilingue	Type de formation	bachelor
Filière(s)	Chimie		

Objectifs

- Connaissance des concepts, définitions et propriétés qualitatives relatifs au domaine de génie chimique
- Calcul de grandeurs et de relations quantitatives, compréhension de l'idée de l'analyse dimensionnelle et de l'utilité des nombres adimensionnels

Contenu

- 1. Surface spécifique, coefficient de broyage et sphéricité
- 2. Unités généralisées, similitudes physiques, théorème de Buckingham, réduction des paramètres, nombres adimensionnels (Re, Ne, Eu, Fr, etc.)
- 3. Loi de broyage, puissance de brassage, temps de mélange, degré de ségrégation
- 4. Théorie de la vitesse de sédimentation d'une sphère isolée, d'un ensemble de particules et de particules avec une forme quelconque. Détermination du diamètre des particules et estimation de la viscosité à travers des mesures de sédimentation.

Formes d'enseignement

i offices a chacignement	
Forme d'enseignement	Durée
Cours magistral (y compris exercices)	32 périodes
Travaux pratiques / laboratoires	
Projets	
Examen de révision	
Examen de branche	

Remarque: 1 période dure 45 minutes

Modalités d'évaluation

· Contrôle continu: travaux écrits

Mode de calcul de la note de cours

La note du contrôle continu est la moyenne pondérée des évaluations du semestre. En cas d'examen de révision, la note finale du cours est la moyenne arithmétique de la note du contrôle continu et de celle de l'examen de révision.

Ouvrages de référence

- Nombreux ouvrages à disposition à la bibliothèque
- Polycopié du cours
- Notes de cours distribuées en classe

Enseignant(s) et/ou coordinateur(s)

Michal Dabros

Date de validation 31.08.2018

Génie chimique 2

Pondération dans le module	2.0	Langue d'enseignement	F
Année de validitée	2020-2021	Identifiant du cours	B2C-CGC2-C
Année du plan d'études	2 ^e année	Niveau	intermédiaire
Semestre	printemps	Type de cours	fondamental
Programme	français, bilingue	Type de formation	bachelor
Filière(s)	Chimie		

Objectifs

- Calcul de grandeurs et de relations quantitatives relatives à la filtration
- Connaissance des concepts relatifs à la pression et aux pertes de charge: unités de pression, équation de Bernouilli, hauteur manométrique, puissance de pompage, diagramme de Moody, nombre de frottement, nombre de Reynolds

Contenu

- 1. Perméabilité d'un gâteau de filtration, théorie de la filtration isobare, traitement des mesures provenant de tests de filtration, filtration à flux constant
- 2. Pression et unités de pression, flux volumiques et pertes de charge
- 3. Équation de Bernouilli (perte de charge dynamique, potentielle, statique, de frottement)
- 4. Paramétrisation des pertes de charges dans une conduite lisse, dans une conduite rugueuse, dans une armature de forme quelconque, écoulement dans une conduite non cylindrique, longueur équivalente et KVS
- 5. Analyse de la puissance de transport et mesure du débit

Formes d'enseignement

Forme d'enseignement	Durée	
Cours magistral (y compris exercices)	32 périodes	
Travaux pratiques / laboratoires		
Projets		
Examen de révision		
Examen de branche		

Remarque: 1 période dure 45 minutes

Modalités d'évaluation

Contrôle continu: travaux écrits

Mode de calcul de la note de cours

La note du contrôle continu est la moyenne pondérée des évaluations du semestre. En cas d'examen de révision, la note finale du cours est la moyenne arithmétique de la note du contrôle continu et de celle de l'examen de révision.

Ouvrages de référence

- Nombreux ouvrages à disposition à la bibliothèque
- Polycopié du cours
- Notes de cours distribuées en classe

Enseignant(s) et/ou coordinateur(s)

Michal Dabros

Date de validation 31.08.2018

Génie des procédés 1

Pondération dans le module	2.0	Langue d'enseignement	F
Année de validitée	2020-2021	Identifiant du cours	B2C-GPR1-C
Année du plan d'études	2 ^e année	Niveau	intermédiaire
Semestre	automne	Type de cours	fondamental
Programme	français, bilingue	Type de formation	bachelor
Filière(s)	Chimie		

Objectifs

- Expliquer, comparer et évaluer le fonctionnement des pompes centrifuges, volumétriques puis à vide.
- Discuter les différentes méthodes de chargement, de prélèvement et de transport des solides, liquides ainsi que gaz puis choisir et justifier leurs utilisations.
- Illustrer les différents types de mélanges ainsi que les régimes de brassages.
- Catégoriser les différents modèles de brasseurs et contre-brasseurs ainsi que de garnissages puis défendre leurs emplois.
- Résumer puis appliquer les phénomènes et paramètres physiques associés au brassage.

Contenu

- Constructions, caractéristiques et fonctionnements des pompes : a) Cinétiques : axiales et radiales; b) Volumétriques : alternatives, rotatives et à membranes; c) A vides : mécaniques, fluides, condensations.
- Constructions, caractéristiques et fonctionnements des unités de chargement : PTS, DSC, trou d'homme, cellule de chargement, boîte à gant, canules, fontaines, vanne d'amorce/papillon, empâteur, cuve mobile...
- Constructions, caractéristiques et fonctionnements desprises d'échantillon : Notecha, ballon sous vide, vanne de fond...
- Perte de charge des pompes dans un circuit de production.
- Compression des gaz avec des compresseurs centrifuges et volumétriques.
- Description des différents modèles de brasseurs, leurs choix d'application ainsi que leurs dispositions dans les appareillages de production.
- Définition des types de mélanges (dispersion, émulsion, suspension, solution, solide, gaz...).
- Homogénéisation des mélanges par brassage (homogène et hétérogène).
- Caractéristiques et positionnements des contre-brasseurs.
- Dispersion de mélanges liquide/liquide et gaz/liquide.
- Définition du 'mixing time ', du coefficient de transfert de masse, de la puissance de brassage ainsi que des régimes de brassage.
- Mesures de sécurité concernant le brassage.
- Mélange de produits visqueux et solides.

Formes d'enseignement

Forme d'enseignement	Durée
Cours magistral (y compris exercices)	32 périodes
Travaux pratiques / laboratoires	
Projets	
Examen de révision	
Examen de branche	

Remarque: 1 période dure 45 minutes

Modalités d'évaluation

Contrôle continu: travaux écrits

Mode de calcul de la note de cours

La note du contrôle continu est la moyenne pondérée des évaluations du semestre : a) Les évaluations de 45 minutes possèdent un facteur 1; b) Les évaluations de 90 minutes possèdent un facteur 2. En cas de rattrapage, le contenu correspond à l'ensemble de la matière traité dans le dit cours/module. La note finale du cours/module correspond à la moyenne arithmétique de la moyenne des contrôles continus et de la note obtenue au rattrapage.

Ouvrages de référence

- [1] Ullmann's Encyclopedia of Industrial Chemistry. DOI: 10.1002/14356007.
- [2] Techniques de l'ingénieur. Repéré à : https://www.techniques-ingenieur.fr/.
- [3] Koller, E. (2013). Aide-mémoire de génie chimique. Paris : Dunod.
- [4] Ignatowiz, E. (1997). Chemietechnik. Haan-Gruiten: Verlag Europa-Lehrmittel.

Enseignant(s) et/ou coordinateur(s)

Ludovic Gremaud

Date de validation

31.08.2018

Génie des procédés 2

Pondération dans le module	2.0	Langue d'enseignement	F
Année de validitée	2020-2021	Identifiant du cours	B2C-GPR2-C
Année du plan d'études	2 ^e année	Niveau	intermédiaire
Semestre	printemps	Type de cours	fondamental
Programme	français, bilingue	Type de formation	bachelor
Filière(s)	Chimie		

Objectifs

- Expliquer, comparer et évaluer le fonctionnement des différents types de réacteurs de l'échelle laboratoire à l'échelle commerciale.
- Mettre en oeuvre l'outil de simulation DynoChem dans le cadre du développement de réaction chimique ou d'opération unitaire.
- Discuter les différentes modes de travail lors de production à l'échelle industrielle et critiquer ceux-ci.
- Catégoriser les différents matériaux de construction des réacteurs puis justifier leurs emplois en fonction du milieu réactionnel.
- Connaître, citer et expliquer le mode de fonctionnement des différents types d'échangeurs de chaleur
- Citer les données de sécurité nécessaires à une analyse de risque / scale-up, et expliquer leur principe de mesure.
- Être capable d'exploiter les données de sécurité mesurées en laboratoire pour calculer la puissance thermique à plus grande échelle et en déduire les risques associés.
- Calculer la puissance de chauffage / refroidissement d'un réacteur.
- Calculer la puissance de refroidissement nécessaire d'une installation pour une réaction donnée, afin d'évaluer le risque chimique.
- Connaître, citer et expliquer le mode de fonctionnement des différents appareils protégeant les installations en cas d'emballement thermique ou d'explosion.

Contenu

- Modes de travail en production : batch, semi-batch, continue...
- Modes de transmission de la chaleur : Tj, Tr, deltaT...
- Les matériaux à l'échelle industrielle : H22, C16, PTFE... et leurs utilisations dans les réacteurs.
- Principes des échangeurs de chaleur pour les réacteurs.
- Simulation de réactions chimiques (hydrogénation, phosgénation, azoture...) avec DynomChem pour les études scale-up & -down.
- Utilisation et description des différents types de réacteurs et d'armatures.
- Emploi des armatures de sécurité sur les réacteurs de production : vannes, clapets, disques de rupture, soupapes...
- Modèles de purgeurs et leurs applications dans une unité de production.
- Approches de sécurité thermique pour le scale-up et l'analyse de risque: RC1, DSC, données de sécurité clé nécessaires, élaboration de scenarios critiques pour le dimensionnement (panne de refroidissement, emballement thermique).
- Echange de chaleur : chauffage / refroidissement de réacteurs (direct, indirect) et méthode de contrôle, échangeurs de chaleurs, fluides caloporteurs, diagrammes de Semenov & rayon critique de F. Kamenetski.

Formes d'enseignement

Forme d'enseignement	Durée
Cours magistral (y compris exercices)	32 périodes
Travaux pratiques / laboratoires	
Projets	
Examen de révision	
Examen de branche	

Remarque: 1 période dure 45 minutes

Modalités d'évaluation

Contrôle continu: travaux écrits

Mode de calcul de la note de cours

La note du contrôle continu est la moyenne pondérée des évaluations du semestre : a) Les évaluations de 45 minutes possèdent un facteur 1; b) Les évaluations de 90 minutes possèdent un facteur 2. En cas d'absence à une évaluation un contrôle de rattrapage aura lieu en fin de semestre. Le contenu correspond à l'ensemble de la matière traité dans le dit cours/module. La note finale du cours/module correspond à la moyenne arithmétique de la moyenne des contrôles continus et de la note obtenue lors du contrôle de rattrapage.

Ouvrages de référence

- [1] Ullmann's Encyclopedia of Industrial Chemistry. DOI: 10.1002/14356007.
- [2] Techniques de l'ingénieur. Repéré à : https://www.techniques-ingenieur.fr/.
- [3] Koller, E. (2013). Aide-mémoire de génie chimique. Paris : Dunod.
- [4] Ignatowiz, E. (1997). Chemietechnik. Haan-Gruiten: Verlag Europa-Lehrmittel.
- [5] Stoessel, F. (2008). Thermal Safety of Chemical Processes. Weinheim: WILEY-VCH.

Enseignant(s) et/ou coordinateur(s)

Véronique Breguet Mercier, Ludovic Gremaud

Date de validation

31.08.2018

Régulation 1

Pondération dans le module	1.5	Langue d'enseignement	F
Année de validitée	2020-2021	Identifiant du cours	B2C-REG1-C
Année du plan d'études	2 ^e année	Niveau	intermédiaire
Semestre	automne	Type de cours	fondamental
Programme	français, bilingue	Type de formation	bachelor
Filière(s)	Chimie		

Objectifs

L'étudiant-e doit être capable de comprendre ce qu'est un système dynamique avec des entrées (grandeurs de commande) et des sorties (grandeurs de mesure) et la façon de réaliser une système régulé en mode tout ou rien ou en mode proportionnel.

L'étudiant-e doit plus particulièrement être capable :

- de comprendre ce qu'est un système dynamique
- de connaître les signaux utilisés pour analyser la réponse d'un système dynamique (impulsion de Dirac, fonction de Heaviside, rampe saturée, fonction sinusoïdale, ...)
- de comprendre la fonction de transfert d'un système dynamique linéaire
- de simplifier des schémas blocs
- de savoir analyser la réponse d'un système dynamique à un signal d'entrée
- de savoir simuler le comportement d'un système dynamique à l'aide d'un outil informatique (LabVIEW ou Matlab).

Contenu

Les chapitres sont :

- Introduction à la régulation
- Les systèmes dynamiques
- La transformée de Laplace
- Fonction de transfert
- Schémas blocs
- Réponse d'un système dynamique

Formes d'enseignement

Forme d'enseignement	Durée	
Cours magistral (y compris exercices)	32 périodes	
Travaux pratiques / laboratoires		
Projets		
Examen de révision		
Examen de branche	oral (15 min.)	

Remarque: 1 période dure 45 minutes

Modalités d'évaluation

Contrôle continu: travaux écrits

Mode de calcul de la note de cours

La note du contrôle continu est la moyenne pondérée des évaluations du semestre. Examen Oral de Branche (EOB) portant sur les cours Régulation 1 et Régulation 2 en fin d'année académique.

Ouvrages de référence

Polycopié du cours

Enseignant(s) et/ou coordinateur(s) Michal Dabros

Date de validation 31.08.2018

Date de mise à jour 14.07.2020

10

Régulation 2

Pondération dans le module	1.5	Langue d'enseignement	F
Année de validitée	2020-2021	Identifiant du cours	B2C-REG2-C
Année du plan d'études	2 ^e année	Niveau	intermédiaire
Semestre	printemps	Type de cours	fondamental
Programme	français, bilingue	Type de formation	bachelor
Filière(s)	Chimie		

Objectifs

L'étudiant-e doit être capable de réaliser la synthèse d'un régulateur tout-ou-rien et d'un régulateur analogique PID (proportionnel, dérivatif et intégral) pour des systèmes dynamiques linéaires comportant une entrée et une sortie (SISO).

L'étudiant-e doit plus particulièrement être capable :

- de comprendre le fonctionnement d'un régulateur tout-ou-rien sans et avec zone morte et hystérésis
- de comprendre le rôle des éléments correctifs d'un régulateur PID (partie proportionnelle, partie dérivative et partie intégrale)
- de comprendre les termes "stables" et "instables" au niveau de la régulation
- de savoir analyser la réponse d'un système dynamique afin d'identifier sa fonction de transfert
- de réaliser la synthèse d'un régulateur (détermination des paramètres du régulateur).

Contenu

Les chapitres sont :

- Le régulateur tout-ou-rien
- Le régulateur PID
- Stabilité d'un système dynamique linéaire réglé
- · Identification d'un système
- Synthèse et dimensionnement d'un régulateur PID

Formes d'enseignement

Forme d'enseignement	Durée
Cours magistral (y compris exercices)	32 périodes
Travaux pratiques / laboratoires	
Projets	
Examen de révision	
Examen de branche	oral (15 min.)

Remarque: 1 période dure 45 minutes

Modalités d'évaluation

Contrôle continu: travaux écrits

Mode de calcul de la note de cours

La note du contôle continu est la moyenne pondérée des évaluations du semestre. Examen Oral de Branche (EOB) portant sur les cours Régulation 1 et Régulation 2 en fin d'année académique.

11

Ouvrages de référence

- Polycopié du cours
- "Initiation à la régulation par une approche pratique" (lien au PDF en français & auf Deutsch donné sur la page Moodle du cours)

Enseignant(s) et/ou coordinateur(s)

Michal Dabros

Date de validation

31.08.2018

Date de mise à jour

06.08.2020

Génie chimique 3

Pondération dans le module	2.0	Langue d'enseignement	F
Année de validitée	2020-2021	Identifiant du cours	B3C-CGC3-C
Année du plan d'études	3 ^e année	Niveau	avancé
Semestre	automne	Type de cours	fondamental
Programme	français, bilingue	Type de formation	bachelor
Filière(s)	Chimie		

Objectifs

Au terme de ce cours, l'étudiant-e doit être capable de comprendre, de modéliser, de simuler et de dimensionner une installation de distillation fonctionnant en batch ou en continu. Les équations mises en jeu dans cette entreprise seront résolues à l'aide d'outils numériques avancés et les différentes variables de procédés (concentrations, débits, efficacités de séparation) pourront être visualisées pour des conditions opératoires variées.

L'étudiant-e doit être capable plus particulièrement:

- de déterminer le degré de liberté d'un procédé de séparation
- de comprendre et d'expliquer les équilibres de phase liquide-vapeur, et de savoir exploiter les diagrammes de phases les représentant dans un contexte de distillation
- de comprendre et d'expliquer le dimensionnement et les limitations d'une distillation flash multi-composants
- d'écrire et de résoudre les bilans de matière et les relations d'équilibre pour une rectification binaire continue à l'aide de la méthode de McCabe-Thiele
- de simuler un problème de distillation complexe avec le logiciel AspenTech ou ChemSep
- de comprendre les enjeux posés par la distillation batch et savoir modéliser quelques situations simples

Contenu

Ce cours de génie chimique 3 traite de différents aspects liés à la séparation des composés chimiques par des procédés de séparation thermiques. Le fil conducteur de ce module sera un procédé de séparation thermique de grande importance industrielle, la distillation. Différentes thématiques autour de la distillation seront abordées.

La structure du cours est la suivante:

- Procédés de séparation et calcul des degrés de liberté
- Thermodynamique des équilibres de phases liquide-vapeur
- La distillation flash d'un mélange complexe
- La rectification continue
- Introduction à la distillation batch et à ses enjeux

Le modèle didactique utilisé dans ce cours sera celui d'une classe inversée. L'étudiant-e devra visionner et/ou lire la documentation qui lui sera distribuée avant le cours afin de pouvoir travailler efficacement sur les différents projets et exercices résolus en classe. Pour une introduction préliminaire à ce qu'est une classe inversée, la vidéo ci-après en explique le principe: https://www.youtube.com/watch?v=UNMx2p9aGAU

Formes d'enseignement

Forme d'enseignement	Durée	
Cours magistral (y compris exercices)	32 périodes	
Travaux pratiques / laboratoires		
Projets		
Examen de révision	oral (15 min.)	
Examen de branche		

22.03.2021

Remarque: 1 période dure 45 minutes

Modalités d'évaluation

Contrôle continu: travaux écrits, Exercices

• Examen: oral (15 min.)

Mode de calcul de la note de cours

Note finale: moyenne semestre x 0.5 + note de l'examen x 0.5.

Ouvrages de référence

- Henley EJ, Seader, JD, & Roper, DK 2011, Separation process principles. Hoboken, N.J., Wiley

Enseignant(s) et/ou coordinateur(s)

Thierry Chappuis

Date de validation

31.08.2018

Date de mise à jour

03.09.2020

Génie chimique 4

Pondération dans le module	1.5	Langue d'enseignement	F
Année de validitée	2020-2021	Identifiant du cours	B3C-CGC4-C
Année du plan d'études	3 ^e année	Niveau	avancé
Semestre	printemps	Type de cours	fondamental
Programme	français, bilingue	Type de formation	bachelor
Filière(s)	Chimie		

Objectifs

Au terme de ce cours, l'étudiant-e doit être capable de comprendre et de dimensionner une installation d'extraction liquide-liquide à l'aide d'un diagrame de phases ternaire. Les équations de bilans et d'équilibres mises en jeu dans cette entreprise seront résolues à l'aide d'outils numériques avancés et les différentes variables de procédés (concentrations, débits, efficacités de séparation) pourront être visualisées pour des conditions opératoires variées. L'étudiant-e apprendra également dans ce module les bases du transfert d'énergie thermique et il sera capable de les appliquer au dimensionnement d'échangeurs de chaleur.

L'étudiant-e doit être capable plus spécifiquement:

- de comprendre et d'expliquer le fonctionnement d'un diagramme de phase ternaire et son utilisation dans le dimensionnement d'une colonne d'extraction liquide-liquide continue
- de simuler un problème d'extraction liquide-liquide complexe à l'aide du logiciel AspenTech
- de comprendre et d'expliquer les différents mécanismes de transfert d'énergie thermique
- d'écrire et de résoudre les bilans de chaleur pour différents designs d'échangeurs de chaleur et de dimensionner ces derniers pour répondre à un besoin spécifique

Contenu

Ce cours de génie chimique 4 commence par étendre les connaissances acquises lors de l'étude de la distillation au cas de l'extraction liquide-liquide. En particulier, l'utilisation d'un diagramme de phase ternaire sera discutée. La suite du module sera dédiée au problème du transfert d'énergie thermique et de son application au dimensionnement d'échangeurs de chaleur.

La structure du cours est la suivante:

- L'extraction liquide-liquide et les équilibres thermodynamiques ternaires
- Les mécanismes du transfert d'énergie thermique
- Modélisation de la diffusion et de la convection thermique
- Dimensionnement des échangeurs de chaleur

Le modèle didactique utilisé dans ce cours sera celui d'une classe inversée. L'étudiant-e devra visionner et/ou lire la documentation qui lui sera distribuée avant le cours afin de pouvoir travailler efficacement sur les différents projets et exercices résolus en classe. Pour une introduction préliminaire à ce qu'est une classe inversée, la vidéo ci-après en explique le principe: https://www.youtube.com/watch?v=UNMx2p9aGAU

Formes d'enseignement

Forme d'enseignement	Durée
Cours magistral (y compris exercices)	24 périodes
Travaux pratiques / laboratoires	
Projets	
Examen de révision	
Examen de branche	

Remarque: 1 période dure 45 minutes

Modalités d'évaluation

Contrôle continu: travaux écrits

Mode de calcul de la note de cours

La note du contrôle continu est la moyenne pondérée des évaluations du semestre. En cas d'examen de révision, la note finale du cours est la moyenne arithmétique de la note du contrôle continu et de celle de l'examen de révision.

Ouvrages de référence

- Kurt Käser ' Chemische Verfahrenstechnik Elemente der Theorie ' Kursunterlagen HTA-FR
- · Nombreux ouvrages à disposition à la bibliothèque

Enseignant(s) et/ou coordinateur(s)

Thierry Chappuis

Date de validation

31.08.2018

Date de mise à jour

03.09.2020

Génie des procédés 3

Pondération dans le module	2.0	Langue d'enseignement	F
Année de validitée	2020-2021	Identifiant du cours	B3C-GPR3-C
Année du plan d'études	3 ^e année	Niveau	avancé
Semestre	automne	Type de cours	fondamental
Programme	français, bilingue	Type de formation	bachelor
Filière(s)	Chimie		

Objectifs

- Expliquer, comparer et évaluer les forces motrices de filtration.
- Discuter les différentes méthodes de filtration puis choisir et justifier leurs utilisations.
- Illustrer les différents critères pour une filtration efficace.
- Résumer, catégoriser et critiquer les différentes méthodes d'extraction.
- Démontrer et comparer les équipements de distillation puis défendre leurs emplois.
- Discuter et comparer les modes de distillations puis évaluer l'utilisation dans le cadre d'un procédé.

Contenu

- Les différentes forces motrices en filtration.
- Les équipements de filtration dans la perspective de la filtration gâteau, de la filtration en profondeur et de la filtration tangentielle.
- Les supports filtrants, leurs propriétés et applications.
- Scale-up d'une opération de filtration : Perméabilité relative.
- Mesures de sécurité concernant les opérations de filtration, d'extraction et de distillation.
- Les différentes unités de distillation & rectification : bouilleurs, évaporateurs couche mince...
- Les modes de distillation à l'échelle industrielle : ' put & take ', continue...
- Les contraintes des séparations de phases à l'échelle industrielle : décanteur, conductimètre...
- Assurer une extraction efficace et représentative de l'échelle laboratoire jusqu'à l'échelle commerciale.

Formes d'enseignement

Forme d'enseignement	Durée	
Cours magistral (y compris exercices)	32 périodes	
Travaux pratiques / laboratoires		
Projets		
Examen de révision	oral (15 min.)	
Examen de branche		

Remarque: 1 période dure 45 minutes

Modalités d'évaluation

- Contrôle continu: travaux écrits
- Examen: oral (15 min.)

Mode de calcul de la note de cours

La note du contrôle continu est la moyenne pondérée des évaluations du semestre : a) Les évaluations de 45 minutes possèdent un facteur 1. b) Les évaluations de 90 minutes possèdent un facteur 2. La note finale du cours/module correspond à la moyenne arithmétique de la moyenne des contrôles continus et de la note obtenue à l'examen de révision.

17

Ouvrages de référence

- [1] Ullmann's Encyclopedia of Industrial Chemistry. DOI: 10.1002/14356007.
- [2] Techniques de l'ingénieur. Repéré à : https://www.techniques-ingenieur.fr/.
- [3] Koller, E. (2013). Aide-mémoire de génie chimique. Paris : Dunod.
- [4] Ignatowiz, E. (1997). Chemietechnik. Haan-Gruiten: Verlag Europa-Lehrmittel.

Enseignant(s) et/ou coordinateur(s)

Ludovic Gremaud

Date de validation

31.08.2018

Date de mise à jour

03.09.2020

Génie des procédés 4

Pondération dans le module	1.5	Langue d'enseignement	F
Année de validitée	2020-2021	Identifiant du cours	B3C-GPR4-C
Année du plan d'études	3 ^e année	Niveau	avancé
Semestre	printemps	Type de cours	fondamental
Programme	français, bilingue	Type de formation	bachelor
Filière(s)	Chimie		

Objectifs

- Expliquer, comparer et évaluer le fonctionnement des pompes centrifuges, volumétriques puis à vide.
- Discuter les différentes méthodes de chargement, de prélèvement et de transport des solides, liquides ainsi que gaz puis choisir et justifier leurs utilisations.

Contenu

- Constructions, caractéristiques et fonctionnements despompes : a) Cinétiques : axiales et radiales; b) Volumétriques : alternatives, rotatives et à membranes; c) A vides : mécaniques, fluides, condensations.
- Constructions, caractéristiques et fonctionnements desunités de chargement: PTS, DSC, trou d'homme, cellule de chargement, boîte à gant, canules, fontaines, vanne d'amorce/papillon, empâteur, cuve mobile...
- Constructions, caractéristiques et fonctionnements desprises d'échantillon : notecha, ballon sous vide, vanne de fond...
- Perte de charge des pompes dans un circuit de production.
- Compression des gaz avec des compresseurs centrifuges et volumétriques.

Formes d'enseignement

Forme d'enseignement	Durée
Cours magistral (y compris exercices)	24 périodes
Travaux pratiques / laboratoires	
Projets	
Examen de révision	
Examen de branche	

Remarque: 1 période dure 45 minutes

Modalités d'évaluation

Contrôle continu: travaux écrits

Mode de calcul de la note de cours

La note du contrôle continu est la moyenne pondérée des évaluations du semestre : a) Les évaluations de 45 minutes possèdent un facteur 1. b) Les évaluations de 90 minutes possèdent un facteur 2. En cas de rattrapage, le contenu correspond à l'ensemble de la matière traité dans le dit cours/module. La note finale du cours/module correspond à la moyenne arithmétique de la moyenne des contrôles continus et de la note obtenue au rattrapage.

Ouvrages de référence

- [1] Ullmann's Encyclopedia of Industrial Chemistry. DOI: 10.1002/14356007.
- [2] Techniques de l'ingénieur. Repéré à : https://www.techniques-ingenieur.fr/.
- [3] Koller, E. (2013). Aide-mémoire de génie chimique. Paris : Dunod.
- [4] Ignatowiz, E. (1997). Chemietechnik. Haan-Gruiten: Verlag Europa-Lehrmittel.

Enseignant(s) et/ou coordinateur(s) Ludovic Gremaud

Date de validation 31.08.2018

Laboratoire de chimie industrielle 1

Pondération dans le module	4.5	Langue d'enseignement	F
Année de validitée	2020-2021	Identifiant du cours	B3C-LCI1-C
Année du plan d'études	3 ^e année	Niveau	avancé
Semestre	automne	Type de cours	fondamental
Programme	français, bilingue	Type de formation	bachelor
Filière(s)	Chimie		

Objectifs

L'étudiant-e doit être capable de comprendre et maîtriser les différents aspects intervenant dans une halle de production. Voici plus en détails ce qu'il faut connaître :

- connaître les différents critères de sécurité d'une zone de production chimique (bâtiment H);
- connaître et maîtriser les différentes installations de la zone de production (bâtiment H);
- être capable de gérer un projet d'équipe pour le développement d'une production.
- être capable de travailler en groupe

Contenu

- 1) Introduction (4 ateliers sur 1 journée)
- La sécurité dans une zone de production chimique
- Le transvasement de produits chimiques
- Le déplacement de produits chimiques
- Le mise en route et la mise en arrêt des énergies du bâtiment
- 2) Cours d'extinction (1/2 jour)
- 3) Projets de groupe sur les opérations unitaires (4 projets de 3 jours)
- Réaction batch ou continue
- Distillation / rectification
- Calorimétrie
- Filtration
- Extraction liquide-liquide
- ...

Formes d'enseignement

Forme d'enseignement	Durée	
Cours magistral (y compris exercices)		
Travaux pratiques / laboratoires	128 périodes	
Projets		
Examen de révision		
Examen de branche		
Remarque: 1 période dure 45 minutes		

Modalités d'évaluation

Contrôle continu: TP/évaluation de rapports, exposés,

Mode de calcul de la note de cours

La note du contrôle continu est la moyenne pondérée des évaluations du semestre. En cas d'examen de révision, la note finale du cours est la moyenne arithmétique de la note du contrôle continu et de celle de l'examen de révision.

Ouvrages de référence

Enseignant(s) et/ou coordinateur(s)

Christophe Allemann, Véronique Breguet Mercier, Thierry Chappuis, Michal Dabros, Olivier Vorlet

Date de validation

03.09.2018

Date de mise à jour

06.08.2020

Laboratoire de chimie industrielle 2

Pondération dans le module	3.5	Langue d'enseignement	F
Année de validitée	2020-2021	Identifiant du cours	B3C-LCI2-C
Année du plan d'études	3 ^e année	Niveau	avancé
Semestre	printemps	Type de cours	fondamental
Programme	français, bilingue	Type de formation	bachelor
Filière(s)	Chimie		

Objectifs

L'étudiant-e doit être capable de gérer un petit projet de chimie industrielle. Le projet est réalisé seul ou en petit groupe.

Contenu

Projets avancés de chimie industrielle sous la responsabilité d'un des professeurs du laboratoire

- 2 projets de 4 à 5 jours
- Une journée de nettoyage

Formes d'enseignement

Forme d'enseignement	Durée
Cours magistral (y compris exercices)	
Travaux pratiques / laboratoires	96 périodes
Projets	
Examen de révision	
Examen de branche	

Remarque: 1 période dure 45 minutes

Modalités d'évaluation

Contrôle continu: TP/évaluation de rapports, exposés

Mode de calcul de la note de cours

La note du contrôle continu est la moyenne pondérée des évaluations du semestre. En cas d'examen de révision, la note finale du cours est la moyenne arithmétique de la note du contrôle continu et de celle de l'examen de révision.

Ouvrages de référence

Enseignant(s) et/ou coordinateur(s)

Christophe Allemann, Véronique Breguet Mercier, Thierry Chappuis, Michal Dabros, Roger Marti, , Olivier Vorlet

Date de validation

03.09.2018

Date de mise à jour

03.09.2020