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The spreading dynamics of small polydimethylsiloxane (PDMS)
drops was studied on substrates with varying surface energies. For
experimental parameters near the wetting transition, we observed
small PDMS drops of different drop volumes as a function of time
using interference video microscopy. While for large drops the con-
tact angle θ decreases with the well-established power-law relation
θ ∼ t−0.3 (Tanner’s law), the effect of dispersive van der Waals (VW)
interactions must be taken into account when interpreting the evolu-
tion of small drops. Two signatures of the VW forces are observed.
For a positive Hamaker constant, the disjoining pressure acts as
an additional driving force, leading to an acceleration of droplet
spreading as soon as the drop height becomes comparable to the
range of the VW interactions. In addition, a precursor film forms
ahead of the contact line, leading to an apparent volume loss, par-
ticularly noticeable for very small drops. Contact line pinning may
be a problem and we describe its effect on our experimental results.
We present a theory that discusses the interplay of surface tension
and VW forces in the case of a spreading drop. This model predicts
a new spreading regime for very thin drops, in agreement with our
experimental results. C© 2001 Academic Press

Key Words: spreading; wetting; Van der Waals interaction;
PDMS.
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I. INTRODUCTION

The wetting of a liquid on a solid substrate is an importa
process in the coating technology with relevance to lubricat
adhesion, spraying, painting, lithographic printing, biologic
cell adhesion, and others. Qualitatively, two different situatio
are distinguished. Liquids on surfaces either form drops wi
well-defined contact angle or spread to a continuous film. Th
two final states are identified as complete and partial wett
Drops on surfaces are, however, often not in their equilibri
conformation. Spreading of viscous liquids is slow and the th
modynamic equilibrium may not be reached in experimenta
accessible times (e.g., several months for highly viscous liqui
Furthermore, surface heterogeneities often cause contac
1 Present address: Instituto de F´ısica, UASLP, Alvaro Obreg´on 64, 78000 San
Luis Potos´ı, México.
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pinning that traps the drops in long-lived metastable state
such cases, the investigation of the wetting dynamics itself
resents an alternative to equilibrium measurements and give
sights into the thermodynamic properties of liquids on surfa

Recent work carried out to understand the wetting dynam
include hydrodynamic theories (1–5) and experimental stu
(2, 5, 6). Continuum theories are justified whenever the th
ness of the wetting film is greater than a molecular distanc
droplet of a nonvolatile liquid spreading on a smooth, non
active substrate represents a good model system. In this
the driving forces are (1): gravity, the liquid–air surface te
sion γ , and the long-range van der Waals (VW) forces. In
overdamped continuum approach, these driving forces are
posed by the viscosityµ. Depending on the dominant drivin
force, different models have been proposed for the wetting
namics. Tanner’s spreading law (2) is an approximate solu
of the hydrodynamic equations when the surface tension is
only driving force. This model gives the radiusa of the liquid–
substrate contact area as a function of the timet in the complete
wetting regime asa ∝ tn. Tanner’s law is also obtained by d
Gennes (1, 7) from a balance between the viscous dissip
and the work done by the surface tension force. He uses a ge
equation that describes the profile of the droplet near the e
when the long-range forces are negligible. In this more gen
theory, the dependence ofa on the droplet volumeÄ is obtained
(1, 7) by

a ∝ Äm(v∗t)n, [1]

with n = 0.1, m= 0.3, andv∗ a characteristic velocity. It is
defined by

v∗ = γ

µ
. [2]

Lopezet al. (3) have analyzed the situation when gravity is
main driving force. They have obtained a similar power l
with n = 0.125 andm= 0.375. These theories are based
steady state arguments focusing on the edge of the film an
ing a lubrication approximation. Tanner (2) and Lopezet al. (3)
compared their theories to experiments, finding good agree
in both cases. Lelah and Marmur (8) measured the kinetic
8
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SPREADING DYNAM

several simple liquids on glass and Marmur (6) recompiled
perimental data from the literature, finding values ofn in the
range 0.1–0.15, with extreme values of 0.033 or 0.31. The
ponentm was between 0.3 and 0.36. Their results were in g
agreement with those of the Lopezet al. model (3). Hydrody-
namic models, however, do not predict the dependence ofn on
a change in temperature, pH, or the hydrophilic nature of a
hols (8), which alter both the surface tension and the visco
The lack of a controlled experimental environment might the
fore explain the range of observed values forn andm. Experi-
mental results for polymer liquids, nonvolatile, high-molecul
weight polydimethylsiloxanes (PDMS) on silicon wafers ha
confirmed the time and volume dependence predicted by Eq
for the two different driving forces (9, 10).

The effects of the VW forces are mainly observed in the p
cursor film, a microscopic film that precedes the macrosco
spreading front. For complete wetting, precursor films were p
dicted by de Gennes (1, 11) and Joanny and de Gennes
13). Their theories were qualitatively confirmed by ellipsome
measurements of PDMS on bare silicon (14). Recent ellips
etry studies (15) of PDMS on various surfaces have investig
the pancake precursor film near the partial to complete wet
transition. For polymeric liquids, molecular precursor films we
observed by ellipsometry (16) and X-ray reflectivity measu
ments (17). All experiments find a diffusive behavior for t
lateral dimension of the precursor filml (16, 18),

l 2 = Dt, [3]

whereD is a diffusion coefficient. This diffusive dynamics wa
predicted by Joanny and de Gennes (13) for the thinnest
tion of the precursor film. A similar expression was obtained
Lopezet al. (3) for droplet spreading driven by VW interaction
only. A microscopic theory (19) based on the diffusive transp
of vacancies from the advancing edge of the film to the d
reservoir has also predicted Eq. [3].

For the partial wetting regime, de Genneset al. (20) have
studied the liquid profile in different regions of the drop whe
continuum mechanics can be applied. Marmur (21) establis
a general equation to determine the shape of the drop for pa
and complete wetting. To our knowledge, there is no exp
mental confirmation of these models. Brochard and de Gen
(22) propose a hydrodynamic model for partial wetting. Th
model applies for small contact angles and low velocities wh
hydrodynamic losses dominate the spreading of drops.

The dynamics of wetting depends on the final equilibriu
state and it may be used to investigate the transition from pa
to complete wetting. Associated with the wetting transition
the critical temperatureTw. Theories assuming short- and lon
range interactions coupling the liquid and the surface have b
proposed for simple liquids (23). The interpretation of the t
oretical results is tricky because of the singularity at the b

critical point close to which the wetting transition is predicte
to occur (24). Experimentally, studying the wetting transition
ICS OF PDMS DROPS 179
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a simple liquid on a substrate is difficult.Tw often lies outside the
range limited by the melting and the boiling temperatures of
liquid, making it inaccessible at atmospheric pressures. In
context, the study of polymer liquids has several advantages
Mean-field theories apply even in the vicinity of critical poin
(26). In addition, the polymers allow a good control of therm
dynamic parameters, such as molecular weight and molec
composition, to fine tune the location of the wetting transit
in the phase space.

An alternative to polymer melts are experiments using po
mer solutions (27, 28). Drops of a mixture consisting of a solve
which completely wets a surface, and a partially wetting polym
exhibit a spreading (or dewetting) behavior, which is a funct
of the polymer concentration. For drops with a small cont
angle, however, polymer–solvent demixing occurs, preclud
experiments in the close vicinity of the wetting transition.

This article studies the spreading of polymer drops near
wetting transition. PDMS of low polydispersity was used
prevent demixing effects that may alter the spreading dynam
Using videomicroscopy, we investigated the spreading of PD
drops as a function of surface energy and temperature.

The drops in our experimental data were modeled as sp
ical caps. The calculation of the real drop profile is a diffic
problem (20, 21) and is not discussed here. The spherical
symmetry assumed here is schematically represented in F
where the geometrical parameters, radiusa, heighth, and ra-
dius of curvatureR, are defined. In our experiments conta
angles are small andh¿ a. The three parameters are related
R= (a2+ h2)/2h. Forh¿ a,

R= a2

2h
. [4]

Other important parameters are the drop volume and the co
angleθ . The volumeV is given by

V = 1

2
πh

(
a2+ h2

3

)
≈ 1

2
πha2 = 1

2
πÄ [5]

with the characteristic volumeÄ,

Ä = a2h. [6]

FIG. 1. Schematic representation of the spreading drop. Our theore
model approximates the drop as a spherical cap:R is the radius of curvature,a
is the radius of the drop–substrate contact area, andh is the height of the drop
with respect to the surface. The vectorr pointing to a volume element of the

d
of
drop and the distancer0 from the center of the sphere to the surface along the
symmetry axis are used in the Appendix.
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The contact angle is given by tanθ = 2ha/(a2− h2). Forh¿
a, it takes the form

θ = 2h

a
. [7]

The experimental parameters in Eqs. [4–7] are defined in te
ofaandh, the only independent variables. Tanner’s law forRcan
be obtained from a relationship betweena andR. Equations [4]
and [6] yieldR= a4/2Ä. Together with Eq. [1] this gives

R∝ Ä4m−1(v∗t)4n. [8]

Similarly, Tanner’s law can be written in terms ofθ , using
Eqs. [7] and [6]:

θ ∝ Ä1−3m(v∗t)−3n. [9]

This paper is structured as follows. After the materials and m
ods and the experimental results in Sections II and III, we pre
a theoretical continuum approach to describe the wetting
namics of a spreading drop in Section IV. In contrast to p
vious models, we shall not focus our analysis on the edg
the drop. Instead, the spreading dynamics of a spherical
of constant volume is considered. While existing theories
based on Young’s equation (29) using a lubrication approxi
tion, spreading in our model is driven by the Young–Lapla
pressure (30) without invoking the lubrication approximati
Our theory, while consistent with the theories mentioned ab
for the case of large drop-thicknessh, predicts a new spreadin
regime for smallh when VW forces become dominant. Apa
from pinning effects, which are discussed in Section V, our
perimental results are well described by this theory. Our find
are highlighted in the conclusions (Section VI) followed by A
pendices I and II showing the derivation of the hydrodynam
equations and the effective VW pressure.

II. MATERIALS AND METHODS

The liquid we used was PDMS, purchased from Polymer S
dards Service with a molecular weight of 52,100 and a p
dispersity of 1.17. The viscosity and the surface tension w
approximately 19.1 Pa s and 21.3 mN/m, resulting in a predi
value forv∗ of ∼0.11 cm/s. PDMS is a nonvolatile, chemica
inert, and thermally stable liquid. The drops were prepared f
a solution of PDMS in analytic grade toluene. The concentra
was between 1 and 3% by weight.

As substrates we used highly polished silicon wafers (Si)
nated to us by Wacker-Chemie GmbH. Plates of 4× 4 cm2 were
coated with a self-assembled monolayer (SAM) of octade
trichlorosilane (OTS), reducing the high surface energy of
bare silicon wafer. This surface modification procedure is
scribed elsewhere (31). Small pieces of about 1× 1 cm2 were

then exposed to the UV radiation of a 400-W mercury lamp
R, AND STEINER
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a distance of 3 cm changing the surface energy of the SA
covered surface. Exposure times ranged from 1 to 32 min.
measured the static (advancing) water contact angleθW as a qual-
itative measure of the surface energy. Values ofθW were in the
range of 110◦ for the initial SAM surface down to 55◦–60◦ after
an UV exposure for 32 min. The surfaces employed in the spr
ing experiments hadθW < 92◦. Critical surface tensions wer
determined using an alkane series (32) at room tempera
yielding 21.8, 23.0, and more than 23.0 mN/m forθW = 105◦,
90◦, and 75◦, respectively. Since the surface tension of PDM
is ∼21.3 mN/m, all our experiments were carried out in
complete wetting regime. At higher temperatures, the comp
wetting of PDMS on these surfaces is expected to persist.

The quality of the surfaces was verified by measuring the
face topography using a home-built atomic force microsc
(AFM) in the tapping mode. The surface of unexposed S
substrates at the center of the plates exhibited small topogra
structures with lateral domain sizes of several micrometers
a root mean square roughness below 0.4 nm over an ar
20× 20µm2. For drop sizes much above the lateral domain s
the effect of this surface roughness on droplet spreading is
ligible, but for small enough drops these surface heterogene
may lead to contact line pinning. We have also investigated
effect of the UV radiation on the SAM surface structure, us
defects in the SAM layer near the edge of the sample as r
ence points. The UV irradiation did not significantly alter t
lateral morphology of the SAM-covered surface. The defe
also allowed us to monitor the thickness change of the S
layer upon UV radiation. It decreased from an initial value o
to 1 nm corresponding to a final surface withθW = 55◦. In our
studies, defect-free substrates from the center of the plates
used and the surface quality was verified using the AFM.

The drops were prepared by spin-coating (Headway Rese
Inc). A drop of polymer solution was put onto the substra
which was rotated at 1000 rpm for 1–2 min. This created a
drops (1–6) on the surface. There is a strong correlation betw
the drop size, the rotation frequency, and the concentration o
solution. Drops with volumes in the range fromÄ = 1× 10−9

to 1× 10−6 cm3 were made this way.
For measurements of droplet spreading as a function of

perature, the samples were placed onto an electrical hot
in a nitrogen atmosphere. Temperatures were kept below 1◦C
to avoid degradation of the polymer and the SAM layer. To
clude a change in the PDMS spreading behavior due to cha
in the SAM morphology we monitored the sample surfaces
ing heating. The substrate was heatedin situby a small electrica
heating stage mounted onto the AFM scanner. No apprec
changes in the SAM structure were observed as a functio
heating conditions similar to the ones employed in our exp
ments.

The spreading of PDMS drops was observed by video
croscopy. A Mitutoyo WF microscope was used in reflect
atplacing an optical filter withλ = 578± 13 nm (Melles Griot)



P

g

i

e

d

a
I

r
s
)

nt

e
trast.
al-
ly

s

ad-
e.
ely

Ex-
of

own
ods

a

e of

ts
nts

con-

t

n

SPREADING DYNAM

into the epi-illumination path of the microscope. The magnific
tion of the objective was 10X with a numerical aperture (N.A
of 0.28. Video images were recorded using a CCD camera (
nix TMC-9700) and a digital videorecorder (Sony DHR-100
connected to a computer. The images were analyzed usin
Image-Pro Plus program. Since the droplets were spreadin
the timescale from several minutes to days, data acquisition
not limited by the recording speed.

The interference pattern of the reflected light yields quant
tively the geometrical parameters of the drops: the radiusa of
the liquid–substrate contact area and the height of the droh
(Fig. 1). Depending on the number of constructive (or destr
tive) interference rings three different methods of analysis w
used:

Method 1. For fringe numbers greater than 8,a is given
by the largest interference ring, whileh was determined by the
number of constructive or destructive rings from the base
the top of the drop,i . Depending on whether the center of th
drop is bright (constructive interference) or dark (destruct
interference),h is given by

h =
(

i + 1

2

)
(λ/2np) (constructive interference)

[M1]
h = iλ/2np (destructive interference),

wherenp = 1.403 is refractive index of PDMS.

Method 2. For fringe numbers between 3 and 8, the int
ference rings are measured as a function of the distancex with
respect to the center of the drop, giving between 10 and 30
points. We calculate the height of each ring using the formu
from [M1]. The points of the drop profileζ are then fitted to

ζ (x) = −R+ h+
√

R2− x2 [M2]

to obtainR andh.

Method 3. For fringe numbers less than 4, the number of d
points obtained using Method 2 is too small for a reliable fit.
stead, we analyzed the intensity profile of the reflected light. T
method is known as reflection interference contrast microsc
(33) and has been widely used to investigate cell adhesion
colloidal interactions near surfaces (34). In this technique,
incident beam is partially reflected at the liquid–air interface a
partially by the substrate. The interference pattern formed by
superposition of the two reflected beams is recorded by the C
camera. The interference patterns are analogous to Newton
of spherical objects. Due to the small N.A. of the objective u
in our experiments, a simple expression can be derived (33

I (x)

Ib
= Lb− 0(λ, α, x) cos

(
4πλ

np
ζ (x)

)
. [M3]
I (x)/Ib is the light intensity normalized by the intensity reflecte
from the substrate (Ib), Lb is the baseline, and0(λ, α, x) =
ICS OF PDMS DROPS 181
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λ
ζ (x) sin2( α2 )) is a coherence function with consta

amplitude00. sinc is defined by sinc(y) = sin(y)/y. The illumi-
nating cone angleα can be approximated byα = sin−1 (N.A).
The coherent function0 indicates that the points close to th
surface, namely, the edges of the drop, have the best con
Lb and00 are given by the Fresnel equations (33), but we ev
uated them by fitting Eq. [M3] to a profile that was previous
analyzed by Method 2. With known geometrical parameterR
andh, Lb and00 are obtained. For knownLb and00, h andR
are obtained by fitting Eq. [M3] to the intensity data.

III. RESULTS

A series of experiments was carried out in which the spre
ing of small PDMS drops was monitored as a function of tim
Experimentally, we varied the substrate surface (qualitativ
characterized by the water contact angleθw determined at room
temperature), the temperature, and the volume of the drop.
perimental details are listed in Table 1. Microscopy images
samples S5, S8, and S9 taken as a function of time are sh
in Fig. 2. Depending on the drop size, data analysis meth
[M1], [M2], or [M3] were applied to extract the radiusa and
the heighth of the spherical cap (see Fig. 1). Froma andh, the
drop contact angleθ was computed (Eq. [7]) and plotted as
function of time. In addition, the drop volumeÄ (Eq. [6]) was
monitored throughout the experiment, to verify the absenc
degradation of the PDMS. The correspondingθ (t) vs t anda2

vs 1/h plots are shown in Fig. 3. A linear dependence ofa2 on
1/h indicates volume conservation.

To quantitatively analyze the data in Fig. 3, power-law fi
according to Eq. [9] were performed. The power-law expone

TABLE 1
Characteristics of the Samples

Tempe- Ä 2a0

System rature θW (×10−8 cm3) (µm) v∗ (cm/s) 3n

S1 R.T.a 75◦ 39.1± 2.00 534 0.10± 0.010 0.30± 0.009
S2 R.T. 90◦ 29.5± 1.60 456 0.12± 0.013 0.30± 0.007
S3 50◦C 75◦ 27.9± 1.50 444 0.13± 0.022 0.29± 0.008
S4 50◦C 90◦ 19.4± 1.00 356 0.17± 0.018 0.30± 0.003
S5 90◦C 75◦ 5.71± 0.13 266 0.24± 0.015 0.28± 0.008
S6 90◦C 90◦ 2.99± 0.23 238 0.28± 0.023 0.27± 0.005
S7 40◦C 90◦ 1.19± 0.09 152 0.18± 0.010 0.25± 0.006
S8 40◦C 60◦ 1.37± 0.07 156 0.16± 0.025 —
S9 90◦C 90◦ 0.125± 0.003b 93 — —

S10 40◦C 92◦ 0.133± 0.001c 84 — —

Note.Experimental details of the samples used in this study. The water
tact angleθW and the initial diameter of the drop 2a0 were the experimentally
determined parameters. The drop volumeÄwas calculated from the drop heigh
h and the radius of the spherical capa. The characteristic velocityv∗ was deter-
mined from the results in Fig. 3. 3n is the power-law exponent from the fits i
Fig. 3.

a Room temperature.

d b Initial volume.

c Average of the linear part in Fig. 3j.



e imag

ple
s
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FIG. 2. Interference microscopy images of three spreading PDMS drops at two different times (left column, initial time; right column, later stage). Thes
in (a), (b), and (c) illustrate the three different data analysis techniques to extract the geometrical parameters from the micrographs. For large enough drops,a is
the radius of the biggest fringe. The number of interference fringes are counted to determineh according to Eq. [M1]. The images in (a) correspond to the sam
S5 at timet = 0 andt = 16 min. For smaller drops, the position and height of the interference fringes are plotted and a fit to a spherical profile yieldR and
h (Eq. [M2]). The micrographs in (b) show sample S8 at timest = 0 andt = 5 h. Spherical fits are shown for increasing times: (4) 80 s, (+) 320 s, (×) 1200 s,

(♦) 2400 s, (h) 3900 s, (s) 10800 s, (5) 18,000 s. The smallest drops were analyzed by fitting Eq. [M3] to the normalized reflected intensity. In (c), results for
drop S9 are shown fort = 0 andt = 40 min.
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FIG. 3. Spreading of the PDMS drops listed in Table 1 as a function of time. The left column shows the variation of the contact angleθ for increasing timest .
In the right column, a linear variation of the drop contact areaa2 versus the inverse drop heighth indicates the conservation of the drop volume. Samples S1d)
and S2 (s) in (a) and S3 (d) and S4 (s) in (c) exhibit Tanner-like spreading. The exponents of power-law fits of Eq. [9] to the data yield exponents 3n as listed in

Table 1. The exponent 3n of samples S5 (d), S6 (s), and S7 (×) in (e) fall below the Tanner exponent. For the smallest drops, VW interactions modify droplet
spreading, leading to accelerated spreading in (g) (S8) or to an apparent loss in volume due to the formation of a precursor film (j) (S9 and S10).
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are listed in Table 1. As a function of drop volume, three disti
spreading regimes can be identified.

Tanner’s regime. For droplets above a critical volume (∼1×
10−7 cm3) the time dependence of the contact angle is w
described by a power-law exponent 3n = 0.30± 0.07 (Figs. 3a
and 3c). The variation ofa2 versus the inverse of the drop heig
h confirms the volume conservation during the spreading of
drops (Figs. 3b and 3d).

The intermediate regime.For mesoscopic drops below th
critical volume, the droplet spreading exhibits a power-law
pendence of the contact angle, featuring an exponent 3n that lies
between 0.24 and 0.30 (Fig. 3e). In this regime, the drop vol
is also conserved (Fig. 3f).

The Van der Waals regime.For drop volumes aroun
10−8 cm3 and below, the time dependence of the contact
gle is no longer described by a power law. For the sample
(Fig. 3g), S9, and S10 (Fig. 3i), an initial regime of slow spre
ing is followed by a regime that is characterized by a Tanner
ponent (3n = 0.3). In the case of sample S8, the Tanner reg
is followed by a regime in which the decrease in contact an
is significantly accelerated (Fig. 3g). While for sample S8,
drop volume is conserved (Fig. 3h), this is no longer the case
samples S9 and S10 (Fig. 3j).

Before moving on to a quantitative discussion, several c
ments are in order. While we do not observe the complete we
of any of the drops (which cannot unambiguously be done
ing optical microscopy), PDMS is expected to completely w
all the substrates used in our experiments (see Materials
Methods). While, the surface tension of PDMS decreases
increasing temperature (by∼20% for PDMS at 90◦C), a much
smaller variation of the critical surface tension of the SAM s
face is possible (35). These conditions favor complete wet
for all surfaces and temperatures studied, confirmed by ou
servation that no equilibration processes were observed dow
contact angles of 0.2◦.

We are able to account for the entire drop volume through
the experiment in the microscopy measurements. The vol
conservation for samples S1–S8 eliminates artifacts due to
evaporation of low-molecular-weight contaminants and ther
degradation of the PDMS. If these effects are also negligibl
the case of S9 and S10, the decrease of drop volume must b
to the flow of PDMS into a thin layer that cannot be detected
optical microscopy.

While experimental artifacts, such as contact line pinni
surface roughness, etc., generally lead to a slowdown of
spreading, the acceleration in the time dependence of the
tact angle in the case of sample S8 indicates the presen
additional driving forces. Since this effect is observed for
smallest drops only, it is possible that the disjoining press
will account for this effect. Before attempting a quantitative d

cussion of our experimental results (Section V), a theoret
framework is developed in the next section.
R, AND STEINER
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IV. THEORY

We regard a nonvolatile liquid drop on a nonreactive smo
surface. Inertial or viscoelastic effects are neglected. Furth
more, our drops are small enough so that gravity is negligib
This justifies the spherical drop profile that is assumed throu
out the analysis. Our theory predicts the time evolution of t
radius of curvature for such a spherical cap. Two size scales
considered: macroscopic drops where VW forces are not imp
tant and microscopic drops where VW forces are dominant.

The equations for this problem are very similar to the flatte
ing of a latex film surface (36) and we have employed a sim
methodology to solve the spreading equations. Details of
calculation are shown in Appendix I. The radius of curvatureR
as a function of time is given by Eq. [A15]

d R

dt
= h

µ

(
2γ

R
− 5(h)

2

)
, [10]

where5(h) is the effective disjoining pressure (37) between
spherical cap and a flat surface (see Appendix II).

The theory presented here is restricted to the case of a con
drop volume. This condition is well satisfied for drops who
dimensions are large compared to the precursor film thickn
determined by the VW forces and the liquid–air surface tens
(1). If the drop is small, however, the volume of the precurs
film could become comparable to the drop volume. In this ca
the drop is drained into the precursor film and its volume is n
conserved. The assumption of volume conservation simpli
our calculation because the drop geometry as a function of t
is determined by a single variable.

A. The Macroscopic Drop

In the macroscopic case dispersive forces are negligible (5 =
0) and Eq. [10] reduces to

d R

dt
= 2γh

µR
= 2v∗

h

R
. [11]

To compare our results with previous theories, we write Eq. [1
in terms of the drop radiusa and the contact angleθ , the common
variables in many wetting models. Equations [4] and [7] expre
the drop radiusR as a function ofθ anda:

R= a

θ
. [12]

The time derivative ofR is

d R

dt
= θ da

dt − adθ
dt

θ2
. [13]

Near the wetting transitionRÀ a, which implies thatd R/dt À
da dθ
icalda/dt. From Eq. [13] followsθ dt (1− θ )À a dt and since
θ ¿ 1, θ da

dt À adθ
dt . Therefore, Eq. [13] can be approximated
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as

d R

dt
≈ 1

θ

da

dt
. [14]

To replaceh/R in Eq. [11], Eqs. [7] and [12] yield

h

R
= θ2

2
. [15]

Inserting Eqs. [14] and [15] into Eq. [11] leads to

da

dt
= v∗θ3. [16]

This equation is a universal spreading equation, known
Tanner’s law (1, 2), which confirms the validity of our approac

To establish a dynamical equation for spreading drops in
case of partial wetting, we start from the partial wetting dynam
as proposed by Brochard and de Gennes (22),

da

dt
= v∗θ(θ2− θ2

e

)
, [17]

whereθe is the equilibrium contact angle. Forθe = 0 we re-
cover Eq. [16]. The equivalent equation forR is obtained using
Eqs. [14] and [15] as follows,

d R

dt
= v∗

(
2h

R
− 2he

Re

)
= 2v∗h

(
1

R
− he/h

Re

)
, [18]

wherehe and Re are the height and the radius of curvature
equilibrium. We approximate the last equation as

d R

dt
= 2v∗h

(
1

R
− 1

Re

)
. [19]

This is justified for drops that are close to their equilibriu
shape. In this case, the main geometric variation comes f
the radius of curvature andhe/h is of order unity. Equation [19]
simply means that droplet spreading is driven by the devia
of the radius of curvatureR from the equilibrium surface. Using
Eqs. [4] and [6],h can be expressed as a function ofÄ andR,

h2 = Ä/2R, [20]

transforming Eq. [19] into

d R

dt
=
√

2Äv∗

R3/2

(
1− R

Re

)
. [21]

For constant drop volumesÄ, the formal solution of Eq. [21] is

5R5/2
e

[
1

2
ln

(
1+√R/Re

1−√R/Re

)
−
√

R

Re
− 1

3

(
R

Re

)3/2
]

= R5/2
i + j ν∗t, [22]
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with the initial cap radius of curvatureRi . We have used the fac
that R0¿ Re and definedϕ as

ϕ = 5

2

√
2Ä. [23]

Equation [22] is an implicit equation inR. The expansion of the
logarithm in Eq. [22],12 ln( 1+x

1−x ) = x + x3

3 + x5

5 + x7

7 · · ·, leads
to a more compact expression,

R5/2 = R5/2
0 + ϕv(t)t, [24]

with

R0 = Ri

f 2/5(R/Re)
[25]

and

v(t) = v∗

f (R/Re)
, [26]

where

f (R/Re)

=
[
1+ 5

7

(
R

Re

)
+ 5

9

(
R

Re

)2

+ 5

11

(
R

Re

)3

+ 5

13

(
R

Re

)4

+· · ·
]
.

[27]

Equation [24] represents our main result of this section. T
difference between partial and complete wetting is given
the velocity v(t) defined by Eq. [26]. For complete wettin
Re→∞, R/Re→ 0, and f (R/Re→ 0)→ 1. In this case,
the velocity v(t) is constant and equal tov∗. The same ap-
plies for the case of partial wetting when the drop is far fro
the equilibrium (R¿ Re andR/Re→ 0). OnceR approaches
Re, R/Re is of order unity, f (R/Re) diverges, andv→ 0 . Fi-
nally, for v = v∗, Tanner’s law is regained from Eq. [24]. Sinc
R5/2 ∝ ϕv∗t ∝ Ä1/2v∗t ,

R∝ Ä1/5(v∗t)2/5, [28]

which compared to Eq. [8] givesn = 0.1 andm= 0.3 as estab-
lished by Tanner.

B. Microscopic Drop

In this situation VW forces are dominant. Making use
Eq. [A22] (Appendix II), Eq. [10] reduces to
d R

dt
= h

2µ
(−5(h)) = 50

2µak
c

. [29]
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This results in a simple spreading equation for VW driv
spreading

R(t) = R0+ vrt [30]

with vr = 50/2µak
c ·50 is an effective Hamaker constant wit

50 = A/12π andk = 2 for nonretarded VW forces and50 =
B/9 andk = 3 for the retarded case, whereA andB are positive
constants.ac is a cutoff length for small values ofh. For a qual-
itative estimate ofac, it is useful to recall the limitations of ou
model. We explicitly assume a self-similar, spherical profile
the drop. While this is justified for the case of the macrosco
drop, where droplet spreading is driven by the Laplace pr
sure, this is only an approximation for VW driven spreading.
particular near the contact line, it is known that VW pressu
deform the drop. Following the arguments in (1), the spher
symmetry of the drop is no longer valid for values ofh that are
smaller than the radius of gyration of the polymer. Therefo
ac is not a molecular length scale, but should have a value
around 10 nm in our case. The physical meaning of our cho
of ac is a follows. By excluding small values ofh from our anal-
ysis, we essentially take the formation of the prewetting la
into account, which forms ahead of the contact line. Since
formation of the prewetting layer is more rapid than the spre
ing of the macroscopic or mesoscopic drop, our model rega
it essentially as a lubrication layer, on top of which the dr
(characterized by a spherical cap profile) spreads. The valu
ac can be determined from our data in Fig. 3 (see Section V

In this manuscript, we study deviations from Tanner spre
ing. Our data sets are best compared when expressing the sp
ing velocity in terms ofv(t) (see Eq. [24]), rather than in term
of vr (t). For the case of the microscopic drop, the velocityv(t)
is defined as

v(t) = 5

4ϕ
R1/2

0 vr

[
2R0+ 3

vr

2R0
t +

(
vr

2R0
t

)2

+ · · ·
]
. [31]

Equation [31] predicts aspeedupof droplet spreading in the cas
when VW forces are dominant. For the nonretarded case,vr can
be written as

vr = 1

4
v∗
(

am

ac

)2

[32]

with

a2
m =

A

6πγ
. [33]

am has the dimension of a length and is of the order of a mo
ular distance (1). Equation [32] shows that the spreading ve

ity sensitively depends on the cutoff lengthac. Using Eq. [32],
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Eq. [31] is rewritten as

v(t) = 1

4

(
R3

0

2Ä

) 1
2
(

am

ac

)2

v∗
[
1+ 3

16

(
am

ac

)2
v∗

R0
t

+ 1

128

(
am

ac

)4(
v∗

R0

)2

t2+ · · ·
]
. [34]

Equations [31] and [34] show an algebraic divergence of
characteristic spreading velocity. In the description of Eq. [2
we are now able to identify three different spreading regim
Initially the spreading of large enough drops is driven by t
Laplace pressure. The characteristic velocity does not v
with time. At a later stage, either the macroscopic cont
angle approaches its equilibrium value and spreading slo
down (v(t) < v∗) or the drop thickness becomes thin enou
so that VW forces become dominant and spreading speed
(v(t) > v∗). To identify the three regimes, the spreading dyna
ics were written for all three cases in terms of Eq. [24].

C. The Crossover Regime

To gain a qualitative understanding of the difference in spre
ing velocity for Laplace- and VW-driven spreading, it is in
structive to compare Equations [11] and [29]. Both equatio
defince the radial spreading velocityvr. Using Eq. [20],d R/dt
in Eq. [11] scales ash3. For VW spreading, on the other han
(Eq. [29]),d R/dt is constant. With increasing spreading tim
h decreases and the VW contribution to spreading (Eq. [2
becomes increasingly important.

The crossover between the two cases occurs when these
driving forces are equally important:

d R

dt
= h

µ

(
2γ

R
+ 50

2hak
c

)
. [35]

The two terms inside the parentheses have the same sign
therefore both contribute to the spreading of the drop. Th
have the same order of magnitude when

2v∗
h1

R1
= 50

2µak
c

. [36]

In the case of partial wetting a general equation is obtained fr
Eqs. [35] and [21]:

d R

dt
= h

µ

(
2γ

R
− 2γ

Re
+ 50

2hak
c

)
. [37]

In this case, the Laplace pressure drives the spreading with
spect to an equilibrium surface. The 2γ /Re term has the opposite
sign compared to the surface tension and VW forces. This te
is canceled by the VW force, when
2v
Re
=

2µak
c

. [38]
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Therefore, the partial wetting condition imposed by the You
equation (29) turns into a situation of complete wetting driven
the VW force if Eq. [38] is satisfied. This implies that the add
tional VW spreading force shifts the wetting transition compa
to a situation in which the Laplace pressure is the only driv
force for spreading.

To quantify the crossover regime from Eqs. [36] and [38]
make use of Eq. [4]. Equation [36] yields

h1 =
√
50

8γak
c

a1. [39]

For the nonretarded case Eq. [39] is written as

h1 = 1

4

am

ac
a1, [40]

wheream is defined by Eq. [33] and is proportional to the streng
of VW forces. A line separates thea–h space into two regimes
in which the Laplace and disjoining pressures are dominant
spectively. In Fig. 4, the line from Eq. [40] is shown together w
two different lines that represent two different drop volumes

In the case of complete wetting, the spreading drop follo
the linesÄ1 (small volume) andÄ2 (large volume) from right
to left (i.e., from higher to smaller values ofh). As time pro-

FIG. 4. Crossover from Laplace to VW-driven spreading. The line given
Eq. [39] divides theh–a space into two regions. For large drop volumes, spre
ing driven by the surface tension dominates over effects caused by dispe
interactions, which are dominant only if the drop heighth is comparable to the
range of the VW forces. Also drawn are two lines corresponding to a small d
(Ä1) and a bigger drop (Ä2). With time t , both drops spread, corresponding
an increase ina and a decrease inh, as indicated by the arrows. If the liqui
completely wets the substrate, both drops eventually enter the VW regime
partial wetting, the drops attain an equilibrium contact angle (θe1, θe2), indicated
by the dashed lines. For the larger contact angleθe1, the intersection with the
Ä1 andÄ2 curve lies in the Laplace regime. The drop stops spreading. D

with θe2, on the other hand, enter the VW regime and spreading is acceler
by the additional dispersive forces.
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gresses, the crossover line is reached and the spreading
drop is accelerated, as discussed in the previous section. E
tion [40] and Fig. 4 predict that, given an attractive VW forc
the spreading of any drop will be accelerated during the
stages of spreading. Since the contact angle is also given
linear relation betweena andh (Eq. [7]), the crossover occur
at a critical contact angle,

θ1 =
√
50

2γak
c

. [41]

For nonretarded VW interactions, the crossover contact a
can be written as

θ1 = 1

2

am

ac
. [42]

In the case of partial wetting two different cases must be dis
guished. For large contact angles, drops reach their equilib
shape before entering the VW regime. A large contact angleθe1

is indicated by a dashed line in Fig. 4. In this case, the V
regime is never reached and the drops stop spreading onceθe1 is
reached, as indicated by the circles in Fig. 4. On the other h
if the equilibrium contact angle is smaller thanθ1, the drops ente
the VW regime and continue to spread, driven by the VW te
in Eq. [37]. This is indicated by the dashed lineθe2 in Fig. 4.

For nonretarded VW forces, the critical contact angle depe
on the ratioam/ac. am is a molecular length (∼1 Å), but ac is
comparable to the size of a polymer coil or the thickness of
precursor film (∼10 nm). Therefore,am/ac ∼ 10−2. This corre-
sponds to a critical contact angle ofθ1 ≈ 0.3◦. Since in our study
contact angles down to 0.2◦ were experimentally observed, th
predicted crossover line in Fig. 4 was well within the parame
range of our experiments.

Before we move on to the discussion of the experime
results, we summarize our theoretical predictions by repea
the equation

R5/2 = R5/2
0 + ϕv(t)t, [43]

which we choose as representation for the spreading of ma
scopic and microscopic drops. The time dependent velocityv(t)
has a different functional form for the following three regime

(i) For large drops, it is constant and equal tov∗ for complete
wetting or partial wetting during the early stages of spread
In this case, Eq. [43] is yet another way to write Tanner’s la

(ii) It goes to zero for partial wetting as a large drop a
proaches its equilibrium radius.

(iii) It increases in the wetting regime in which VW force
are dominant. In the case of complete wetting this occurs
drops of any size at small enough contact angles. On surf
atedthat are partially wetted by the liquid, this regime is only entered
if the equilibrium contact angle is small enough.
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V. DISCUSSION

The theoretical predictions from the previous section al
us to identify the various spreading regimes in our experime
data. To this end, we reanalyze our experimental data from F
in terms of Eq. [43]. In particular, the time-dependent veloc
in Eq. [43] quantifies deviations from Tanner’s law. This is
lustrated in Figs. 5a and 5b: for samples S1 showing the Ta
exponent in Figs. 3a and 3c, the velocity is constant. The ex
imental values ofv∗ are listed in Table 1. At room temperatu
we find a good agreement of our experimental data with
value ofv∗ = 0.11 cm/s as calculated from the surface tens
and viscosity (Eq. [2]).

As the drop size is decreased, a deviation from Tanner’s la
observed (Fig. 3e): the spreading of the droplet is slowed d

FIG. 5. Data from Figs. 3a, 3c, and 3e replotted in terms of the sprea
velocityv versus timet for samples S1 (d) and S2 (s) in (a) and S3 (d) and S4
(s) in (b). As expected from Tanner’s model, the spreading velocity is cons
(v = v∗). Even for drops that exhibit an exponent 3n below 0.3, the relation

v = v∗ = const. is still a good approximation, namely, for samples S5 (d) and
S6 (s) in (c).
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to power-law exponents below 0.3. This is not surprising, si
pinning effects are known to cause deviations from Tanner’s
While care was taken in our experiments to minimize the eff
of dust particles and impurities, they can never be comple
eliminated. Pinning of the moving interfaces becomes more
portant as the drop size is reduced. This effect can be unders
in the following way. The spreading coefficient defines a fo
per length of the contact line. It is defined in terms of the liqu
surface tension and the contact angle:

S= γ (1− cosθ ). [44]

S does not depend on the drop size. When the contact line
counters a pinning center, it is first retarded (pinning) and t
accelerated (depinning). Assuming a random distribution of s
ilar pinning centers on the surface, approximately the same n
ber of pinning and depinning events take place at any given
and the forces associated with pinning and depinning ev
cancel on the average. The stochastic nature of the pinning
ter distribution, however, gives rise to a noise term, leading
a threshold pinning forceFc that is proportional to the squar
root of the number of defects encountered by the contact
(38). Since the number of pinning centers is proportional to
length of the contact line 2πa, Fc ∝ √a. The overall spreading
force, on the other hand, varies linearly witha. As the drop size
is decreased,Fc becomes increasingly important. This leads
an effective slowdown of the spreading velocity.

Beyond the qualitative observation of a slowed down spre
ing dynamics for drops with volumes below∼1× 10−7 cm3

(Fig. 3e), we note that even in the presence of pinning the c
tact angle exhibits a power-law variation over several decade
time. This is in good agreement with previous experimental
theoretical work (38). Pinning and depinning is often describ
by a stick-slip behavior similar to avalanches in a granular fl
or the movement of fluid interfaces in porous media. In th
cases, the motion of a contact line has been proposed as a
ample of dynamical critical phenomena.

To compare our results from Fig. 3e with previous expe
ments and theories, it is useful to define the dimensionless
locity of the contact line, the capillary number

Ca= νa/v
∗, [45]

with the velocity of the contact lineνa = da/dt. The dynam-
ics of fluid interfaces in the presence of quenched disorde
believed to be governed by a universal critical exponentβ,

νa ∝ (F − Fc)
β, [46]

whereF is the driving force acting at the contact line andFc the
critical value for which the contact line is pinned. In terms
the capillary number this is written as

F − Fc = γ (cos(θc)− cos(θ )) ∝ Caβ
′
, [47]
with β = 1/β ′. For small values ofθ andθc¿ θ , Eq. [47] is
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FIG. 6. Variation of the contact angleθ as a function of the capillary numbe
Ca (Eq. [45]) in a log–log representation. Sample S1 in (a) is well describe
a power-law fit (Eq. [48]) with an exponentβ ′/2= 0.34± 0.02, corresponding
to β = 1.5± 0.1, the Tanner exponentβ = 3/2. The smaller drop of sampl
S7 (b) exhibits a crossover from Tanner spreading (β = 1.5± 0.1) to a slowed
down regime with (β = 2.4± 0.1). The slowed down spreading is reminisce
of pinning effects, leading toβ values larger than 3/2 (38).

approximated as

θ ∝ Caβ
′/2. [48]

In Fig. 6, the contact angle is plotted as a function of capill
number for the samples S1 (Fig. 6a) and S7 (Fig. 6b) on a log
scale. Despite the larger scatter due to the numerical deriv
of our data, we see a clear difference in the power-law fits.
sample S1, a single power-law fit corresponding to an expo
with β ′/2= 0.34± 0.02 describes well the entire data set. T
corresponding critical exponentβ = 1.5± 0.1 is close to the
value predicted for spreading drops in the absence of pinn
β = 3/2 (Tanner’s law).

In the case of sample S7, a crossover between two sprea
regimes is observed. The Tanner spreading of the drop at
capillary numbers (β = 1.5± 0.1) slows down at lower capil
lary numbers and a fit yields a critical exponent ofβ = 2.4± 0.1.
This higher exponent is in good agreement with several theo

ical studies that include pinning effects, as well as with seve
experimental studies (38).
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While sample S7 represents the most severe case of pin
when comparing the data sets from Fig. 3, samples S5 an
should feature exponentsβ between 1.5 and 2.5. Due to th
scatter in the data when taking the derivative to obtain the co
line velocity, we do not attempt this type of analysis. Assum
a Tanner exponent in Fig. 3e (dashed line) and plottingv∗ as a
function of time (Fig. 5c), we see that within the experimen
scatter, these two samples are well represented by Tanner’

In Fig. 7a, we perform a similar analysis for sample S7
in Fig. 5. When plotted in terms of Eq. [43],v(t) is no longer
constant. After a spreading time of approximately 1 h,v slows
down to less than 1/2 of its value at small times. This behavior
reminiscent of the time dependence of Eqs. [25] and [26], w
predict the slowdown of droplet spreading in the case of pa
wetting when the contact angle approaches its equilibr
value. This interpretation of the spreading behavior of sam
S7 is, however, not consistent when compared to the re
of other samples. In particular samples S2, S4, and S6 fe
substrates with the same surface energy. No sign of pa
wetting was observed for these samples. The unambig
observation of droplet slowdown in the case of partial wet
is difficult. For θ → θe , the driving force approaches zero a
pinning effects become dominant. To distinguish a slowdo
of the velocity according to Eqs. [25] and [26] from interfac
pinning seems a difficult task.

FIG. 7. For small drops strong deviations from Tanner’s law are obser
In the case of sample S7 in (a), the slowdown in the spreading velocity b
v∗ is presumably due to pinning effects (see Fig. 6b), but an equilibratio
the drop cannot be excluded. In the absence of pinning, the drop of samp

ral(b) is accelerated to values ofv > v∗, caused by the additional VW driving
force. The line is a guide to the eye.
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Before we move on to discuss the spreading behavior of s
ple S8, it is important to note that all effects discussed ab
lead to a slowdown of droplet spreading. In the case of sam
S8, we observe the contrary: a clear increase in spreading v
ity compared to Tanner spreading (dashed line in Fig. 3g). T
effect is better visualized when plotting the data according
Eq. [43]. The initial Tanner regime withv(t) = v∗ is followed
by a marked increase in spreading velocity (Fig. 7). Qual
tively, an additional driving force must accelerate the spread
velocity. As shown in the previous section (Eqs. [31] and [34
the effect of VW interactions lead to such an increase in
locity. While our data are not sufficiently accurate to distingu
between the effect of nonretarded and retarded VW interacti
we are able to estimate the onset of accelerated spreading

From Fig. 3g, we determine a crossover angle for acceler
spreading of 9.6± 0.5 mrad. Using Eqs. [42] and [33] with A∼

FIG. 8. Formation of a precursor layer with lengthl and thicknesse (a). For
the smallest drops, the draining of PDMS into the precursor film is measur
For samples S9 (b) and S10 (c), the results from Fig. 3j are replotted in term
the drop volumeÄ versus timet . The linear volume decrease is a signature o
diffusive behavior for the films lengthl (Eq. [3]). The linear fits yield diffusion

constants ofD = 4.5× 10−7 cm2/s andD = 5.4× 10−8 cm2/s, respectively,
in qualitative agreement with values reported in the literature (18).
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1× 10−20 J andγ = 20 mN/m we obtainac ≈ 8.5 nm. Assum-
ing retarded VW interactions (Eq. [41]) with B∼ 1× 10−28 Jm,
a cutoff length ofac ≈ 14.5 nm is calculated. Both values are
the order of the size of a PDMS coil (2Rg = 10.8 nm).

A second indication for the role of VW forces in the spreadi
of drops is seen in the results from samples S9 and S10. W
only little information is obtained from the spreading veloci
(an acceleration of spreading is also observed here, but pin
effects may explain why the overall spreading rate lies be
the Tanner limit (dashed line)), a systematic decrease in appa
volume is revealed in Fig. 3j. Excluding thermal degradation,
attribute this “loss” of material to the formation of a precurs
film. In addition to the acceleration of droplet spreading, t
VW forces promote the creation of the thin precursor film th
propagates across the surface ahead of the drop (Fig. 8a). Fi
8b and 8c show the variation of the drop volume as a function
time for samples S9 and S10. The volume of the precursor
is given byÄf ∝ πel2. The linear decrease of the drop volum
corresponds to an increase of the precursor filmÄf ∝ πeDt.
Assuming values for the precursor film thicknesse (∼20 Å)
and a diffusion coefficientD (∼10−6 cm2/s) from the literature
(18), we find reasonable agreement with the slopes in Figs
and 8b (2.8× 10−13 cm3/s and 3.4× 10−14 cm3/s, respectively).
Interestingly, the draining of the drop into the precursor fi
seems to be hardly influenced by pinning effects as a compar
of Figs. 3i and 3j shows.

VI. CONCLUSION

We have investigated the spreading of PDMS drops wit
lateral dimension ranging from 500µm to less than 100µm
on silicon surfaces covered by alkane self-assembled mono
ers near the wetting transition. Depending on the drop volu
we observe three spreading regimes. For the largest drops
observe Tanner spreading where the contact angle versus
exhibits power-law dependence with an exponent of 0.3.
drops smaller than 250µm, the power-law exponent falls be
low 0.3 and contact line pinning becomes dominant. Within
times of our experiments (∼1 week), the smallest drops sprea
so that the height of the spherical cap is comparable to the ra
of VW interactions.

To analyze our data, we have presented a simple model, w
describes the spreading dynamics of a spherical cap. This th
considers the spreading dynamics in the complete and pa
wetting regime and the effects of the VW forces on the spread
behavior.

Two signatures of the role of long-range interactions are
flected in our experimental results. First, in the absence of c
tact line pinning, we observe the acceleration of spreading
small drops. This acceleration must come from an additio
driving force and the only likely candidate is the VW intera
tion. Second, for the smallest drops, we observe a system

decrease in the apparent drop volume, which is caused by the
draining of the drop into the precursor film.
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While we have characterized our drops in terms of their v
ume, we would like to point out that all the effects that relate
the VW forces should be observable also for the larger drop
sufficiently long times.

An additional remark concerns the spherical profile assum
in the theory. Three parameters characterize the drops on
substrate,R, h, anda, where only two are independent. In o
case, we assumeRÀ aÀ h. In this approximation, the spher
ical symmetry is not a precondition. We can also assume o
profiles featuring, for example, parabolic or elliptic cross s
tions and the results derived above would change only l
since the analysis focuses on the center of the drop. A Gaus
profile, which is often used to analyze ellipsometry or X-r
experiments (16), may serve as an example,

ζ = he−
(x−x0)2

2σ2 , [49]

whereσ is the standard Gaussian deviation that character
the width of the profile. Ifh¿ σ , the radius of curvature at th
top of the profile can be approximated by1

Rg
= d2ζ

dx2 |x=x0,

1

Rg
= h

σ 2
, [50]

which is similar to the relation found for a spherical profi
Eq. [4], witha = √2σ .

As an outlook, several interesting questions remain. The
ory we developed predicts an intriguing behavior for drops t
wet the substrate only partially. Sufficiently far from the wetti
transition, the drops spread until they assume their equilibr
shape with a well-defined, relatively large contact angle. Cl
to the wetting transition, where the equilibrium contact an
is below a critical value, VW interactions cause the compl
spreading of the drops. This behavior is not easy to study ex
imentally as the Laplace force that drives the spreading of
drops approaches zero as the drop equilibrates. Pinning ef
of even the smallest substrate perturbation could overpowe
acceleration of spreading by VW forces.

In our discussion of experimental results and in the theoret
calculations, we limited ourselves to single drops on surface
the experiments, however, there were always a finite numbe
drops of different sizes present on the surface. These drops
interact via their precursor films. In our case, individual dro
on the samples were too far apart for their precursor films
overlap. Future experiments should focus on correlation eff
of several drops spreading simultaneously.

APPENDIX I

To derive the basic differential equation for the radius of c
vature (Eq. [10]), we start with the Navier–Stokes equation
a viscous incompressible liquid. Since the liquids we use

very viscous the spreading dynamics is extremely slow and
inertial and convective terms in the Navier-Stokes equation c
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be neglected. Furthermore, since the drops are very small, b
forces can be omitted as well. Thus,

µ∇2u = ∇P [A1]

and for an incompressible liquid

∇ · u = 0 [A2]

with the velocityu and the pressureP inside the drop. Making
use of Eq. [A2], the divergence of Eq. [A1] yields

∇2P = 0. [A3]

Our analysis is restricted to the central region of the drop, close
the symmetry axis. This is sufficient for determining the chan
of the radius of curvature with time. We assume that only rad
pressure and velocity components are relevant,P = P(r ) and
ur = ur (r ), with no angular dependence. Then, the solution
Eq. [A3] is (36)

P = C

r
+ P0, [A4]

whereP0 is a constant external pressure.C is a constant that has
to be determined by the boundary conditions.

We now proceed by calculating the velocity fieldu. The
Navier–Stokes equation in spherical coordinates is given by (

µ

(
∂2ur

∂r 2
+ 2

r

∂ur

∂r
− 2

ur

r 2

)
= ∂P

∂r
. [A5]

Inserting Eq. [A4] into Eq. [A5] gives

r 2 d2ur

dr2
+ 2r

dur

dr
− 2ur = −C

µ
. [A6]

This is an Euler differential equation with the solution

ur = c̃1r + c2

r 2
+ C

2µ
. [A7]

The integration constantsc̃1 andc2 have also to be determined by
the boundary conditions. At the impermeable substrate surf
ur (r = r0) = 0, which results in

ur = c1

(
r

r0
− r 2

0

r 2

)
− C

2µ

(
r 2

0

r 2
− 1

)
. [A8]

At the liquid–air interface, the Young–Laplace equation impos
a second boundary condition,
the
an

σ a− σ l = 2γ

R
, [A9]
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whereσ a− σ l is the total stress. The indices a and l refer to
air and liquid phases, respectively. The stresses are given by

σ a = −P0 [A10]

and

σ l = −P − 2µ
∂ur

∂r

∣∣∣∣
r=R

, [A11]

whereP is given by Eq. [A4]. Using Eqs. [A4] and [A9]–[A11
to eliminatec1 in Eq. [A8] yields the radial velocity at the dro
surface (r = R). ur (R) is then (up to orderO(h/R)) given by

ur (R) = h

2µR
(2γ − C). [A12]

In a quasi-steady state approximation (i.e., if the spreading
locity is slow compared to the response of the velocity pro
in the drop to a sudden change in drop shape), the valueP
at the drop surface is given byP(R) = P0− 2γ

R +5(h). Since
Eqs. [A4]–[A12] are only valid close to the symmetry axis of t
drop, we include the dispersive interactions as a negative e
tive disjoining pressure5(h), which is derived in Appendix II.
In this approximation,C is notr dependent and can be obtain
from Eq. [A4] since

P(R) = −2γ

R
+5(h)+ P0 = C

R
+ P0, [A13]

giving

C = R5(h)− 2γ. [A14]

Finally, since the liquid–air interface velocityur (R) is the change
of the drop radius with time,d R/dt,Eqs. [A12] and [A14] yield

d R

dt
= h

µ

(
2γ

R
− 5(h)

2

)
. [A15]

APPENDIX II

Since only the central region of the drop is considered,
have to derive an effective disjoining pressure that takes the
der Waals interaction of the entire drop into account. We fol
the procedure outlined in Israleachvili’ s book (40) and cal
late the interaction energy of a spherical cap and a flat sur
For the integration of the VW energy, we choose a coordin
system withz= 0 at the substrate surface. The volume of a
cular section of the drop with the areaπx2 at a distancez from
the surface isπx2 dz= π (h− z)(2R− h+ z) dz. For non-
retarded VW interactions, the net interaction energy is obta
by integration over the drop volume (40),

A
h∫

(h− z)(2R− h+ z)

W(h) = −

6
ac

z3
dz, [A16]
R, AND STEINER
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whereac is a lower cutoff length. UsingR= Ä/2h2+ h/3 the
integral is evaluated,

W(h) = − A

36

[
3Ä− h3

a2
ch

− 6Ä− 8h3

ach2

+ 3Ä− 7h3+ 6h3 log(ac/h)

h3

]
. [A17]

The total disjoining pressure is the derivative ofW(h) divided
by the surface area of the dropSd = 2πR(h− ac):

5(h) = 1

Sd

∂W(h)

∂h
= A

12π

[
1

a2
ch
− 3

ach2

]
. [A18]

In the limit ac¿ h only the first term in Eq. [A18] is relevant:

5(h) = A

12πa2
ch
. [A19]

The same calculation is repeated for retarded VdW forces,

W(h) = πB

3

h∫
ac

(h− z)(2R− h+ z)

z4
dz, [A20]

leading to a disjoining pressure

5(h) = B

9

[
1

a3
ch
− 2

a2
ch2
− 2

ach3

]
. [A21]

Forac¿ h, Eqs. [A18] and [A21] can be summarized as

5(h) = − 50

ak
ch
, [A22]

with 50 = A/12π andk = 2 for the nonretarded potential an
50 = B/9 andk = 3 for the retarded case.

Our derivation of the effective disjoining pressure assume
spherical shape of the drop. In general, the role of the5(r − r0) is
more complex since it may cause a deformation of the drop f
its spherical symmetry. This effect becomes important near
contact line where the drop is deformed and where molec
relaxation processes are dominant. Therefore, the constaac

must be set to a large enough value to exclude this region.
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