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a b s t r a c t

The indentation response of Nickel nano double gyroid films has been measured using a Berkovich
nanoindenter and the effectivemechanical properties of the Ni double gyroid lattices inferred via amulti-
scale finite element analysis. The 1 µm thick double gyroid films were manufactured by block copolymer
self-assembly followed by electrodeposition of the Ni resulting in two interpenetrating single gyroids
of opposite chirality, an overall relative density of 38% and a cell size of about 45 nm. The measured
hardness was ∼0.6 GPa with no discernable indentation size effect. A multi-scale finite element (FE)
analysis revealed that the uniaxial compressive strength is approximately equal to the hardness for this
compressible lattice. Thus, the 38% relative density Ni double gyroid has a strength equal to or greater
than the strongest fully dense bulk Ni alloys. The FE calculations revealed that this was a consequence
of that fact that the Ni in the 13 nm gyroid struts was essentially dislocation free and had a strength of
about 5.7 GPa, i.e. approaching the theoretical strength value of Ni. The measurements and calculations
reported here suggest that in spite of the nano gyroids having a bending-dominated topology they attain
strengths higher than those reported for stretching-dominatedmicron scale latticematerialsmade via 3D
printing.We thus argue that relatively fast and easy self-assembly processes are a competitive alternative
to 3D printing manufacture methods for making high strength lattice materials.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Over the past decade there has been considerable research into
strategies to develop materials with the aim of filling holes in ma-
terial property space as defined in Ashby charts [1]. One approach
to filling these gaps inmaterial property space is that ofmanipulat-
ing chemistry, developing newmetal alloys, new polymer formula-
tions and new compositions of glass and ceramics. A second is that
ofmanipulatingmicrostructure, using thermo-mechanical process-
ing to control the distribution of phases and defects within mate-
rials. Both have been exploited systematically, leaving little room
for further gains, which tend to be incremental rather than step-
like. A third approach is that of controlling architecture to create hy-
brid materials—combinations of materials or of material and space
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in configurations that offer enhanced performance. The success of
carbon and glass-fibre reinforced composites at one extreme, and
of foamed materials at another in filling previously empty areas of
the strength density property space as seen in Fig. 1 has resulted in
intense recent activity in the so-called lattice materials [2].

Lattice materials are cellular, reticulated, truss or lattice struc-
tures made up of a large number of uniform lattice elements
(e.g. slender beams or rods) and generated by tessellating a unit
cell, comprised of just a few lattice elements, throughout space.
Spatial or 3D lattices can be generated by filling space from
polyhedral to generate effective solids with a volume fraction of
solid material ρ (referred to subsequently as relative density).
Of the regular polyhedra with a small number of faces only the
cube and the rhombic dodecahedra can be tessellated to fill all
space [3]. Typically spatial lattices are constructed using combi-
nations of different polyhedral. For example, tetrahedra and oc-
tahedra may be packed to form the octet truss lattice [4]. There
are two distinct species of lattice materials in terms of their
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Fig. 1. A strength versus density Ashby chart showing position of the Ni nano
double gyroid lattices in strength-density space. The measured properties of macro
Ti octet truss lattices (Dong et al. [14]), Cu micro octet truss lattices (Gu and
Greer [9]) and micro ceramic honeycombs (Bauer et al. [12]) are highlighted.

mechanical properties. The first, typified by foams, are bending-
dominated structures whose strength scales with ρ3/2 and the sec-
ond, are stretching-dominatedwith strength scaling linearlywith ρ.
To give an idea of the difference, a bending-dominated foam with
ρ = 0.1 is less strong by a factor of 3 than a stretching-dominated
octet truss lattice of the same relative density. The macroscopic
properties are largely dictated by the connectivity of joints rather
than by the regularity of the microstructure as discussed by Desh-
pande et al. [5].

Significant advances in the design and manufacture of lattice
materials of various topologies with the aim of filling gaps in
strength-density property space have been reported over the past
few years driven largely (but not exclusively) by the development
of 3D printing technology. Most of these lattice materials have
stretching-dominated topologies for the reasons described above
and fall into two categories: (i) macro lattices defined as lattice
materials with struts in the millimetre or larger length scale
[6–8] and (ii) micro/nano lattice materials with features sizes on
the micron or sub-micron length scale [9–12].

The potential of macro-lattices in filling gaps in property space
is readily determined by employing ‘‘continuum’’ bounds on prop-
erties. For example the space in Fig. 1 labelled as ‘‘unattainable’’ is
based on the fact that either no element heavier than∼25Mgm−3

is known or exist and at low densities the highest achievable
strength is limited by the Voigt bound: a porous solid made from a
parentmaterial with yield strength σYS is limited to have a strength
σY = ρσYS at the relative density ρ. Thus, the unattainable mate-
rial space in the top half of Fig. 1 is based on the highest strength
that can be achieved by lattice materials made from solid dia-
mond. Highly anisotropic micro-structures such as laminates or fi-
bre composites can attain the Voigt bound. The upper bound on
the strength of an isotropic porous solid can be estimated using
the non-linear Hashin–Shtrikman upper bound [13] given by

σY

σYS
=

2 ρ
(1 − ρ) + 4


1 +

2
3 (1 − ρ)

 . (1.1)

The optimal strength of macro lattices made from the strongest
solid Ni alloy is indicated in Fig. 1 using Eq. (1.1). There are no
known micro-structures of lattice materials that achieve this non-
linear Hashin–Shtrikman upper bound but the octet truss lattice
is known to have theoretical properties that are reasonably close.
Dong et al. [14] reported in a comprehensive study on Ti octet
truss lattices (compressive measurements included in Fig. 1) and
thesematerials have the highest strength to density ratios ofmacro
lattice materials reported to-date.

The push to design micro/nano lattices has been driven by the
work on size effects in the strength of metals. This ‘‘smaller is
stronger’’ effect has been observed when crystalline metals are
subjected to either strain gradients with micron/submicron wave-
lengths [15,16] or sub-micron size specimens subjected to uniaxial
deformation [17,18]. The use of this material strength size effect
has been previously been exploited in nanoporous foams: these
foams have been shown to have strengths higher than their macro
counterparts. Advances in micro/nano 3D printing technologies
such 2-photon lithography [12,19,20] and various types of micro-
stereolithography [10,11] have enabled these ideas to be extended
to manufacture architecture micro/nano lattices with stretching-
governed topologies. In fact, Gu and Greer [9] have shown that Cu
octet truss lattices with ρ ≈ 0.5 can have a strength higher than
fully dense bulk Cu. Thus, continuum bounds such as Eq. (1.1) with
σYS estimated from bulk strength measurements of the solid ma-
terial can significantly underestimate the potential of micro/nano
lattices in filling gaps in strength-density property space.

Here we report the manufacture and mechanical properties of
Ni gyroid lattice materials made via a self-assembly route. This
manufacturing process not only has the advantage of being faster
compared to most 3D printing technologies, it also permits the
manufacture of gyroid lattices with strut dimensions on the order
of ∼10 nm: current 3D printing routes are unable to achieve this
resolution. Struts with 10 nm diameters are expected to fully ex-
ploit the ‘‘smaller is stronger’’ effect and themain aim of this study
is to investigate this potential.

2. Experimental protocol and measurements

The overall aims of the experimental program are to measure
the indentation response of Nickel nano double gyroid lattices and
use these measurements to extract both the effective properties of
the gyroid lattices and those of the parent solid material.

2.1. Manufacture of nano double gyroid lattice coatings

The Nickel double gyroid thin film coatings of thickness∼1µm
weremanufactured by block co-polymer self-assembly onto a soda
lime glass slide of thickness 2.2 mm coated by a 200–300µm thick
layer of fluorine-doped tin oxide (FTO) as described in detail by
Scherer et al. [21]. Here for the sake of completeness we briefly
describe the salient steps.

First, the FTO coating was treated by a 0.1% solution of
octyltrichlorosilane in anhydrous cyclohexane in order to make
the coating slightly hydrophobic. Next, an approximately 1 µm
thick layer of poly(4-fluorostyrene-r-styrene)-b-poly(D, L-lactide)
(i.e. the copolymer) was spun coated on the FTO and the coated
glass slide heated in a nitrogen atmosphere to 180 °C in about 30
min and then held at 205 °C for 8 min before cooling to 180 °C.
The film was held at 180 °C for 10 min before quenching to room
temperature. This heat treatment results in the formation of the
double gyroid topology of the lactide phase and the inverse double
gyroid morphology of the polystyrene phase. The lactide is then
dissolved using a 0.1 M solution of sodium hydroxide (50:50 wa-
ter to methanol) to leave behind the inverse polystyrene double
gyroid. Nickel is then electro-deposited on the polystyrene lattice
using Nickel Bright Finish solution (supplier Alfa Aesar) and finally
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Fig. 2. (a) Sketch of the double gyroid lattice comprising two interpenetrating single gyroids of opposite chirality. In this sketch a double gyroid with 2 × 2 × 2 units is
shown with each single gyroid having a relative density ρ = 0.19 such that the double gyroid has a relative density ρDG

= 0.38. (b) Sketch of the double gyroid unit cell
used in the FE computations of the effective properties.
Fig. 3. SEM micro-graphs of the top surface of the Ni double gyroid films in (a) low magnification showing the ‘‘grain’’ structure and (b) high magnification in which the
45 nm gyroid unit cells are visible.
the polystyrene dissolved with toluene to leave behind the Ni dou-
ble gyroid lattice film on the FTO coating of the glass slide.

The co-polymer contains 37.9 vol% lactide and hence this
process produces a Ni double gyroid of relative density ρDG

=

0.38 comprising two interpenetrating single gyroids as sketched
in Fig. 2(a). Each of these interpenetrating single gyroids have a
relative density ρ = 0.19 with a unit cell size ∼45 nm and strut
diameter of ∼13 nm as discussed in Scherer et al. [21]. Scanning
electron micro-graphs (SEM) of the top surface of the gyroid films
are shown in Fig. 3(a) and (b) at two levels of magnification. The
smaller magnification image in Fig. 3(a) clearly shows areas of
different orientations of the gyroid latticeswith ‘‘grain’’ boundaries
separating these areas. Thus, these polycrystallineNi double gyroid
films have a columnar structure with in-plane grain sizes of
∼1.5 µm. The higher resolution image in Fig. 3(b) gives some
indication of the gyroid topology though even this resolution is
insufficient to fully resolve the 45 nm unit cells.

The thicknesses of the Ni double gyroid films of all specimens
tested in this study were measured using a Zygo NewView 3D in-
terferometer (i.e. the height difference between the FTO and gyroid
film surfaces). All filmshad a thicknessh = 0.9±0.1µmconsistent
with the 1 µm target film thickness. In addition surface roughness
measurementswere also conducted using raster scanning by an in-
denter tip using a Hysitron Ub1 Nanoindenter system. An example
of such a raster scan is included in Fig. 4. All the Ni double gyroid
films tested in this study had an average roughness Ra ≈ 20 nm.

2.2. Indentation measurement protocol

Berkovich nanoindentation tests on 4 Ni double gyroid films
were performed using Hysitron Ub1 Nanoindenter system with a
maximum indentation force of 10 mN and a depth resolution of
0.04 nm. The Berkovich tip had a tip radius of 50 nm and the usual
Berkovich half angle of 65.35° measured from the axis to one of
the pyramidal flats. The calibration between the nominal contact
area Ac and the indentation depth δ as given by manufacturer (and
confirmed by conducting indentation tests on fused silica glass
samples with a modulus 69.6 GPa) is

Ac ≈ 24.5δ2
+ 0.7698δ, (2.1)

where Ac and δ are in µm2 and µm, respectively. The tip is
thus sufficiently sharp to be considered to be pyramidal at an
indentation depth δ ≥ 3 nm.

Approximately six separate indentation tests were conducted
on each of the 4 gyroid films. For each test 30 interrupted
load/unload cycles were performed whereby the peak load in each
cycle was progressively increased to the maximum machine load
capacity of 10 mN over the 30 cycles. Each loading and unloading
segment was 2 s in duration with a 1 s hold between these seg-
ments. During each unloading cycle the loadwas reduced to 50% of
the load just prior to unloading. The modulus and hardness were
extracted from these measurements using the standard Oliver and
Pharr [22] procedure. We note in passing that experiments were
also performed by increasing the above loading times by a factor
of 10: no appreciable change in the measurements was observed
indicating that the responses measured here are reasonably strain
rate insensitive. We outline this procedure here for completeness
and to clarify the assumptionsmade in the context of compressible
lattice films.

The hardness H at an indentation depth δ is defined as H (δ) ≡

P/At , where P and At are the applied indentation load and true pro-
jected contact area, respectively at the applied indentation depth
δ. While the nominal contact area Ac is immediately known from δ
via the tip area function (2.1), the true contact area At is typically
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Fig. 4. A raster scan of a 10µm×10µmpatch of the surface of theNi double gyroid
film using the Nanoindenter system. The mean surface roughness is Ra ≈ 20 nm.

estimated in the indentation analysis of fully dense metals via cor-
rection factors to account for the effect of sink-in or pile-up around
the indenter [22]. However, the double gyroid films are plastically
compressible as discussed in Khaderi et al. [23] and finite element
calculations presented in Section 3 confirm that there is negligible
sink-in or pile-up around the indenter for these gyroid films. Thus,
in the indentation analysis employed here we assume At = Ac and
the hardness H follows directly from the measured load and in-
dentation depth via the area tip function (2.1). The procedure to
infer the Young’s modulus EDG of the gyroid film is as follows. A
power law curve of the form P = c


δ − δf

m is fitted to the mea-
sured unloading response P(δ) where δf ,m and c are constants to
fit the measured curve. The unloading stiffness is then defined as
S ≡ dP/dδ at the peak load P = Pmax at the indentation depth δmax

just prior to unloading, i.e. S ≡ mc

δmax − δf

m−1. The reduced
Young’s modulus ER of the double gyroid film and the indenter tip
is then given via the Sneddon [24] formula as

ER =
S
2


π

At
, (2.2)

where we will again assume At = Ac . With the reduced modulus
now known the double gyroid filmmodulus EDG is inferred from ER
using the usual contact relation

1
ER

=


1 −


ν I

2
E I

+


1 −


νDG

2
EDG

, (2.3)

where E I
= 1140 GPa and ν I

= 0.07 are the Young’s modulus
and Poisson’s ratio, respectively of the diamond Berkovich inden-
ter tip material [25] and νDG

= 0.35 is the Poisson’s ratio of the
ρDG

= 0.38 gyroid film; see Section 3 for the elastic properties of
gyroid lattices.

2.3. Measured properties of the Ni gyroid films

An SEM micrograph of the top indented top surface of the
gyroid film is included in Fig. 5 at a normalised indentation depth
δ/h ≈ 0.73. The indented region is seen to span across multiple
domains/grains of the gyroid film. This is typical for most of the
indents performed in this study and thus the results presented
subsequently should be viewed as averages over multiple gyroid
orientations. The measured values of ER and H are plotted in
Fig. 6(a) and (b), respectively as a function of the normalised
indentation depth δ/h. Results are presented showing the mean
over all 24 tests conducted on the 4 different gyroid films and
error bars showing the standard deviation about thismean are also
included.1 The hardness H is seen to be reasonably independent
of δ especially for δ/h ≥ 0.2. At δ/h = 0.2, the contact depth
δ = 200 nm and from Eq. (2.1) the contact area Ac ≈ 1.13 µm2

corresponding to a contact radius
√
Ac/π = 600 nm. Thus, for

δ/h ≥ 0.2 the indentation depth δ ≫ Ra and the contact radius
is much larger than the gyroid lattice cell size. This results in a
measured hardnessH that is independent of the indentation depth.
By contrast, the reducedmodulus ER shows a clear rising trendwith
increasing δ presumably due to interactionswith the stiff substrate
over the whole range of indentation depths investigated here.

The hardness measurements can be used to estimate both
the compressive strength of the gyroid lattice and the associ-
ated strength of the parent Ni in the struts of the gyroid lattice.
For highly porous (and hence compressible) solids, the indenta-
tion hardness is approximately equal to their uniaxial compressive
strength [26], i.e. H ≈ σ DG

Y , where σ DG
Y is the uniaxial compres-

sive strength of the double gyroid. We thus estimate that the com-
pressive strength of the ρDG

= 0.38 Ni double gyroid lattice to be
σ DG
Y ≈ 0.6 GPa. Gibson and Ashby [3] estimate the strength of low

relative density isotropic bending-dominated lattices made from
parent materials of strength σYS as σY = 0.3ρ1.5σYS . Then with,
H ≈ σ DG

Y we get the relation between the measured hardness and
relative density ρ of the single gyroid as

H = 2 × 0.3ρ1.5σYS, (2.4)

wherewehave included a factor of 2 in the pre-factor to account for
the fact that the measured hardness is for the double gyroid com-
prising two interpenetrating but independent single gyroids of rel-
ative density ρ. WithH = 0.6 GPa and ρ = 0.19, we deduce σYS =

12.1 GPa. This is many times higher than the bulk yield strength
of annealed Ni and in fact higher than usual estimates of the the-
oretical strength GS/10, where GS is the shear modulus of solid Ni.
Thus, while it is conceivable that this approximate analysis overes-
timates σYS it nevertheless suggests an anomalously strong parent
material response. We attribute this high strength to the ‘‘size ef-
fect’’ of the yield strength as reported in numerous recentmeasure-
ments on the compressive response of Ni and othermetallicmicro-
pillars [17,18]. These studies have shown that the compressive
strength of micro-pillars increases sharply with decreasing pillar
diameter for diameters less than about 0.5µmdue to the so-called
dislocation starvation phenomenon. In such small pillars, disloca-
tions readily exit from the free surfaces leaving behind dislocation-
free specimens that can approach their ideal strength. For example,
Dou and Derby [27] proposed that the strength σYS scales with pil-
lar diameter d for FCC materials such as Ni and Au via the relation

σYS =


Gs

10
d < 54.52b

1.4Gs(d/b)−0.66, 54.52b ≤ d <


1.4Gs

σ0

1.52

σ0 otherwise,

(2.5)

where b is the Burger’s vector and σ0 the bulk yield strength of
the metal. With b ≈ 0.25 nm for Ni, Eq. (2.5) predicts that Ni
struts attain their theoretical strength for d < 13 nm which is ap-
proximately the strut diameters of the double gyroids tested here.
This size effect of the strength of the parent material is what re-
sults in the anomalously high strengths of the gyroids investigated

1 The variation in the experiments could be partly related to the indentation
across differently oriented grains. However, we shall see in Section 3 that the
mechanical properties of gyroids are reasonably isotropic and thus the grain
structure of the films is not thought to be the primary cause of the observed scatter.
The scatter is primarily related to variations between samples: the precise source
of this scatter remains a topic for further investigations.
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Fig. 5. SEM micrographs showing the top view of the double gyroid film indented to a normalised depth δ/h ≈ 0.73 by the Berkovich indenter. (a) Micrograph showing
the full indented zone and (b) a magnified view of the marked region in (a) near a grain boundary.
Fig. 6. The measured (a) reduced indentation modulus ER and (b) hardness H of the Ni double gyroid films a function of the indentation depth δ normalised by the double
gyroid film thickness h. The error bars indicate the standard deviation of the measurements over the 24 tests conducted on 4 different gyroid films. The FE predictions with
parent Ni properties ES = 242 GPa, νS = 0.3 and σYS = 5.74 GPa are included and seen to be in good agreement with the measurements.
here. Such observations of ultra-strongmicro latticematerials (cell
size ∼6 µm) made by 3D printing using a nano-scribe have re-
cently been reported [9] though in those studies the parent mate-
rials strength did not approach the theoretical strength of the ma-
terials. The parent material strength of the gyroid inferred here is
significantly higher than those reported in [9] due to the fact that
the gyroids made by the block copolymer route have significantly
smaller cell sizes.

The scaling analysis reported here is very approximate and we
proceed in Section 3 to report detailed numerical simulations to
more accurately estimate the properties of the parent material
of the Ni double gyroids from the indentation measurements
reported here.

3. Numerical simulations of the indentation of double gyroid
films

The main aim of this study was to measure the fundamental
mechanical properties of the nano double gyroid lattices such
as the Young’s modulus and uniaxial compressive strength. The
indentation measurements reported above do not directly provide
these properties. Here we report a multi-scale analysis to extract
both the effective mechanical properties of the double gyroids and
the properties of the parent material within the gyroid struts from
the indentation measurements of Section 2.

The basic outline of the procedure is described here and details
provided in subsequent sections. First the double gyroid unit cell
is modelled explicitly and three-dimensional (3D) finite element
(FE) calculations performed to determine the effective properties
(Young’s modulus, yield strength etc.) of the double gyroid for
an assumed set of parent material properties. These effective
properties are then used to calibrate a continuum crushable foam
model that represents the smeared-out double gyroid lattice. Finite
element calculations are then used to determine the indentation
response of the gyroid film with the film modelled as a crushable
foam and the glass slide substrate as a linear elastic medium.
The predicted indentation response is compared against the
measurements reported in Section 2. This procedure is iteratively
repeated by changing the assumed parent material properties of
the gyroids until good agreement of the predicted and measured
indentation response is achieved. This converged simulation gives
the effective properties of theNi double gyroids tested in this study
as well as the associated properties of the parent Ni.

3.1. Effective properties of the double gyroid

In order to compute the effective properties of the double gyroid
we first need to construct a periodic unit cell. A sketch of this
unit cell is shown in Fig. 2(b). This unit cell is constructed using
the approximation to the single gyroid morphology as proposed
by Lambert et al. [28] and Wohlgemuth et al. [29]. These authors
suggested that the surface of a single gyroid is well represented by
a function F − t0 = 0, where

F ≡ sin

2πx
a


cos


2πy
a


+ sin


2πy
a


cos


2πz
a


+ sin


2πz
a


cos


2πx
a


. (3.1)

Here a is the periodicity of lattice and (x, y, z) are Cartesian
coordinates that are aligned with the cubic directions of the gyroid
lattice as shown in Fig. 2(b) while the scaling parameter t0 sets
the relative density of the single gyroid. Equation (3.1) results in
a gyroid with a connectivity of three struts per node with Plateau
border like features near the nodes. The cross-section of the struts
of the gyroid changes from an elliptical shape near the nodes to
a circular shape at mid-span. The thinning of the struts towards
the mid-span implies that the value of t0 is limited to |t0| < 1.41
as the area of the circular cross section at mid-span vanishes for
larger values of |t0|. The double gyroid is then constructed infilling
the spaces F − t0 ≥ 0 and F + t0 ≤ 0 to get two interpenetrating
single gyroids of opposite chirality as shown in Fig. 2. A value of
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|t0| = 0.93 gives a single gyroid with relative density ρ = 0.19
and corresponding 38% relative density double gyroid.

The double gyroid geometry was constructed as described
above and FE calculations performed to determine the effective
elastic and plastic properties of the double gyroid using the com-
mercial finite element package ABAQUS. The double gyroid geom-
etry was meshed using uniform four-noded linear tetrahedral el-
ements (C3D4 in the ABAQUS notation) such that at-least 20 el-
ements were present across the mid-span section of the gyroid
struts. The parent material of the gyroid was assumed to be an
isotropic elastic perfectly-plastic J2 flow theory solid with an elas-
tic Young’s modulus ES , Poisson’s ratio νS = 0.3 and uniaxial yield
strength σYS . Simulations with periodic boundary conditions im-
posed on the unit cell sketched in Fig. 2(b) were conducted to
determine the three independent elastic constants of the double
gyroid (cubic symmetry of the double gyroid implies there are
three independent elastic constants) as well as the strength σ DG

Y
and associated plastic Poisson’s ratio νDG

p for uniaxial compres-
sion/tension along one of the cubic directions of the double gyroid
(all the three cubic directions are identical).

With (x, y, z) representing the cubic directions of the double
gyroid as shown in Fig. 2(b), the effective elastic response can be
written using Voigt notation as

εxx
εyy
εzz
2εyz
2εxz
2εxy



=



1/EDG
−νDG/EDG

−νDG/EDG 0 0 0
−νDG/EDG 1/EDG

−νDG/EDG 0 0 0
−νDG/EDG

−νDG/EDG 1/EDG 0 0 0
0 0 0 1/GDG 0 0
0 0 0 0 1/GDG 0
0 0 0 0 0 1/GDG



×


σxx
σyy
σzz
σyz
σxz
σxy

 , (3.2)

where EDG is the Young’s modulus, GDG the shear modulus and
νDG the Poisson’s ratio. The predicted variations of these elastic
constantswith the relative densityρDG

= 2ρ are plotted in Fig. 7(a)
(ρ varied in the FE calculations by changing the gyroid geometry
via the scaling parameter t0). The scaling of EDG and GDG with ρDG

is approximately quadratic: the gyroid lattice has a connectivity
of three struts per node and consequently is a bending-dominated
structure [5] that gives this quadratic scaling.

Next consider the strength predictions of the double gyroid lat-
tice. Either elastic buckling or plastic yielding of the struts sets
the strength of the gyroid with elastic buckling expected to be the
operative collapse mode at combinations of high parent material
yield strain εYS ≡ σ YS /ES and low relative density ρDG [3]. The cal-
culations presented here were conducted with a parent material
yield strain εYS = 0.03 and elastic buckling was not observed to
be operative over the range ρDG

≥ 0.1 investigated here. Thus,
the strength calculations presented here are valid for double gy-
roids made from parent materials with εYS ≤ 0.03. Predictions of
the variation of the uniaxial compressive/tensile strength σ DG

Y with
ρDG are included in Fig. 7(b): intriguingly σ DG

Y scales nearly lin-
early with ρDG. Scaling arguments based on modelling the gyroids
struts as slender beams suggestσ DG

Y ∝

ρDG1.5 as discussed in Sec-

tion 2.3. However, the slender beam assumption is not appropriate
for double gyroids with ρDG
≥ 0.1 and the full 3D FE calculations

presented here suggest that double gyroids have a strength that
scales nearly linearly with relative density over the range inves-
tigated here. Double gyroids are compressible cellular solids and
the plastic Poisson’s ratio is another property typically considered
relevant to characterising the plastic response of such materials.
For uniaxial stressing in the x-direction, the plastic Poisson’s ra-
tio νDG

p is defined in terms of the plastic strain increment rates ε̇
p
xx

and ε̇
p
yy = ε̇

p
zz as νDG

p ≡ −ε̇
p
yy/ε̇

p
xx. Predictions of the variation of

νDG
p with ρDG are included in Fig. 7(b): unlike most high porosity

cellular solids these double gyroids have a relative high νDG
p that

ranges between 0.45 and 0.35 for the ρDG values investigated here.
Intriguingly, νDG

p decreaseswith increasing ρDG (though in the fully
dense limit of ρDG

= 1 the incompressible limit of the parent ma-
terial is expected to be recovered). This is thought to be related to
the details of the gyroidmorphology and chirality, which results in
a self-folding collapse mode.

3.2. Indentation response of double gyroid films

In the experiments reported in Section 2.3, the indenter contact
radii were significantly larger than the gyroid cell sizes over the
majority of the range of indentation depths investigated. Thus,
a large number of gyroid cells are being deformed during the
indentation process with the wavelengths associated with the
deformation field large compared to the gyroid cell size. Thus, the
discreteness of the gyroid microstructure is expected to play a
negligible role in the indentation response detailed in Section 2.3
and it is reasonable to model the gyroid lattice by an appropriate
smeared-out continuum.

The gyroid lattices are crushable cellular solids with cubic
symmetry. Themulti-axial collapse surface calculations of Khaderi
et al. [23] show that both the elastic and plastic properties
of the gyroids lattice are reasonably isotropic. We thus model
the double gyroids lattices using the isotropic crushable foam
model of Deshpande and Fleck [30]. This essentially implies that
we are modelling indentation over multiple grains (as per the
experiments)with the parameters of the Deshpande and Fleck [30]
constitutive model representing and an ensemble average of the
gyroid properties over multiple orientations. Here we briefly
describe this constitutive model and detail its calibration to
simulate the double gyroids films. Write sij as the deviatoric stress
and the von-Mises effective stress as σe ≡


(3/2)sijsij. The

isotropic yield surface of the double gyroid lattice is then specified
by

σ̂ − Y (ε̂p) = 0, (3.3)

where the equivalent stress σ̂ is a homogeneous function of σe and
the mean stress σm ≡ σkk/3 according to

σ̂ 2
≡

1

1 +


α
3

2 
σ 2
e + α2σ 2

m


, (3.4)

and ε̂p the plastic strain work-conjugate to σ̂ . Moreover, Y (ε̂p)
is the uniaxial yield strength that is a function of the ε̂p and the
parameterα denotes the ratio of deviatoric to hydrostatic strength.
Note that the normalisation factor on the right-hand side of
Eq. (3.4) is chosen such that σ̂ denotes the stress in a uniaxial
tension or compression test. Normality of plastic flow is assumed
and this implies that the plastic Poisson’s ratio νDG

p is related to α
via

νDG
p =

1/2 − (α/3)2

1 + (α/3)2
. (3.5)
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Fig. 7. FE predictions of the variation of the mechanical properties of a double gyroid made from an isotropic elastic perfectly plastic material. The variation with relative
density ρDG of (a) the normalised elastic moduli EDG/ES , GDG/ES , νDG and (b) the normalised uniaxial strength σ DG

Y /σ YS along a cubic direction as well as the corresponding
plastic Poisson’s ratio νDG

p .
Fig. 8. Sketch of axisymmetric conical indentation model used to predict the
Berkovich nanoindentation response of gyroid films on a glass substrate. The
dimensions of the different layers are indicated in terms of the gyroid film
thickness h.

The double gyroids lattice is expected to behave like a cellular
solid with its uniaxial compressive response characterised by a
plateau strength σ DG

Y followed by densification due to contact
between the cell walls. This densification strain is reasonably
independent of the relative density for periodic lattices [31] and
thus we assume Y (ε̂p) to have the form

Y =


σ DG
Y ε̂p

≤ 0.6
σ DG
Y + hp(ε̂

p
− 0.6) otherwise,

(3.6)

where the hardening rate hp beyond densification is assumed to be
equal to the Young’s modulus EDG of the double gyroid. The total
strain increment is given by the sumof the elastic and plastic strain
increments and here we assume an isotropic elastic response with
Young’s modulus EDG and Poisson’s ratio νDG.

Indentation calculations are reported here for a double gyroid
of relative density ρDG

= 0.38 made from a parent material with
Young’s modulus ES , Poisson’s ratio νS = 0.3 and yield strength
σYS . The calculations of Section 3.1 then specify νDG

p ≈ νDG
≈ 0.35

and it follows from Eq. (3.5) that α = 1. Moreover, for ρDG
= 0.38

we see from Fig. 7 that σ DG
Y = 0.1σYS and EDG

= 0.062ES . The
parent material modulus ES and strength σYS are therefore treated
as unknown parameters and varied in order to bring the predicted
and measured indentation responses into good agreement.

The indentation experiments on the double gyroid films were
performedusing a Berkovich indenter. Numerous studies including
3D FE calculations [32] have shown that it suffices to model the
Berkovich indenter by a conical indenter with semi-angle β =
70.3° as shown in Fig. 8 so that the nominal contact area Ac
versus indentation depth δ relation for this equivalent conical is
equal to that of the ideal Berkovich indenter. Thus, we employ a
simplified axisymmetric model (Fig. 8) for the indentation of the
double gyroid films on glass substrates of thicknesses h and 50h,
respectively and radius R = 10h. The glass substrate wasmodelled
as linear elastic solid with modulus 69.6 GPa and Poisson’s ratio
0.3 while the conical indenter was assigned the properties of
diamond, i.e. again a linear elastic solid with modulus E I

=

1140 GPa and Poisson’s ratio ν I
= 0.07. The double gyroid

film was assumed to be perfectly bonded to the substrate with
material properties as detailed above. Quasi-static finite strain
indentation calculationswere performedwith contact between the
indenter surface and gyroid film modelled using the Master–Slave
surface contact algorithm inABAQUS. In linewith the experimental
protocol, successive loading and unloading cycles were performed
tomeasure the applied load P versus indentation depth δ response
and the reduced modulus ER and hardness H extracted as in the
experiments; i.e. using the Oliver and Pharr [22] method. In the
case of these FE calculations, this implies that the contact area
versus depth relation is given by Ac = πδ2 tan2 β ≈ 24.5δ2 and
the hardness H = P(δ)/Ac (δ) at a depth δ. The reduced modulus
is also inferred by fitting a power law to the unloading curve and
then using the Sneddon formula as described in Section 2.1.

FE predictions of the reduced modulus ER and hardness H as a
function of the normalised indentation depth δ/h are included in
Fig. 6(a) and (b), respectively for parent material properties ES =

242 GPa and σYS = 5.74 GPa (i.e. εYS = 0.023).2 These values of
the parent material properties bring the measured and predicted
indentation responses into good agreement (to within the scatter
of the experimental data) over the whole range of δ investigated
here. This then implies that the ρDG

= 0.38 Ni double gyroids in-
vestigated here have a Young’s modulus and uniaxial compressive
strength of EDG

= 15 GPa and σ DG
Y = 574 MPa, respectively. We

note in passing that the stresses σγ generated in the gyroid struts
due to surface energy are on the order of 100 MPa (σγ ∼ γ /d,
where γ = 1 Jm−2 is the surface energy and d = 10 nm the diame-
ter of the gyroid strut) and is thus small compared to the estimated
material strength of σYS = 5.74 GPa. The continuummodelling ap-
proach presented here is therefore sufficient without the need to
explicit account for surface effects via lower length scalemolecular
dynamics calculations.

Thus, consistent with the approximate estimates presented in
Section 2.3, we find that the Young’s modulus of the parent solid

2 Recall that the FE calculations of Fig. 7(b) are valid for εYS ≤ 0.03 and thus the
parent material parameters inferred here lie within this range of validity.
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Fig. 9. FE predictions of the distribution of the effective plastic strain ε̂p

immediately under the conical indenter at three selected values of the normalised
indentation depth δ/h = 0.1, 0.2 and 0.3.

material is in line with that of bulk Ni. However, the strength σYS
is at-least a factor of 20 higher compared to bulk annealed Ni and
on the order of usual estimates of the theoretical strength GS/10.
This anomalously strong parent material response is due to the
lack of dislocations within the very small diameter gyroid struts
as discussed in Section 2.3.

Contour plots of the equivalent plastic strain ε̂p immediately
underneath the indenter at three selected values of the normalised
indentation depth δ/h are included in Fig. 9. Consistent with nu-
merous studies in the literature on the indentation of porous
solids [26], we observe that the material immediately in contact
with the indenter has fully densified with active plastic straining
taking place in a small intermediate zone between the densified
region and the surrounding elastic material. The deformation pro-
ceeds in approximately a self-similar manner with the densified
zone increasing in size. Importantly we observe that there is neg-
ligible pile-up or sink-in around the edges of the indented zone
consistent with the assumptions made in the extraction of ER and
H from the indentation measurements.

4. Nickel nano-gyroids in strength versus density material
space

We have estimated the Young’s modulus and strength of the
ρDG

= 0.38 Ni double gyroid to be EDG
= 15 GPa and σ DG

Y =

574 MPa, respectively. Thus, porous Ni with ∼60% porosity has a
compressive strength that is higher than that of the strongest bulk
Ni alloys even though this double gyroid latticematerial is approx-
imately 2.5 times lighter compared to bulk Ni. Consequently, the
measured Ni nano gyroid strength apparently violates the non-
linear Hashin–Shtrikman bound as seen in Fig. 1. This is due to
the fact that nano size struts have an anomalously high strength
σYS = 5.74 GPa which is much higher than that of bulk Ni.

There is a growing literature on ultra-strong micro lattices
and thus it is instructive to compare the strength of the Ni
double gyroid lattices with other materials including the recently
manufactured nano/micro lattice materials. The double gyroid
strength predictions of Fig. 7(b) are plotted in the Ashby chart in
Fig. 1 using an assumed parent Ni strength σYS = 5.74 GPa and
density of the solid Ni ρS = 8900 kg m−3. The measured strength
of the ρDG

= 0.38 double gyroid lattice (which has a density ρ =

ρDGρS = 3380 kg m−3) is explicitly marked in the Fig. 1 and lies
above even the strongest solid Ni alloys. A similar observation of a
metallic porous lattice material having a strength higher than the
equivalent bulk material has been previously reported for micron
scale Cu octet truss lattice materials built via micro 3D printing [9]
and these measurements are included in Fig. 1. The octet truss is a
stretching governed and generally considered a practical optimal
topology in terms of the stiffness and strength of a nearly isotropic
lattice material. Nevertheless as seen in Fig. 1, these octet truss
lattices have a lower strength to density ratio compared to the
bending-dominated double gyroid lattices. This is due to the fact
that the minimum unit cell size of the octet trusses investigated
by Gu and Greer [9] was 6 µm and consequently via Eq. (2.5)
the parent material was weaker in these micro octet truss lattices
compared to parent material of the nano gyroids: the high parent
material strength at the nano sizes more than compensates for the
loss of strength due to the bending-governed gyroid topology.

The strength of micro/nano-scale prismatic ceramic lattices
again made via 3D printing are also included in Fig. 1. In the
prismatic directions these essentially two-dimensional materials
outperform the nano gyroid lattices. However, we emphasise that
the gyroids are nearly isotropic while the prismatic lattices are
strongly anisotropic with very weak in-plane responses.

5. Concluding remarks

We have reported indentation measurements and associated
simulations to estimate the mechanical properties of Ni nano dou-
ble gyroids. Nickel double gyroid films of thickness approximately
1 µmwith unit cell sizes on the order of 45 nm and a relative den-
sity of 38% were manufactured by block co-polymer self-assembly
followed by electro-deposition of the Ni. Berkovich nano inden-
tation tests were performed to determine both the hardness and
modulus of the films. The measurements revealed a high hardness
of∼0.6 GPa and no discernable indentation size effect on the hard-
ness measurements.

A multi-scale finite element analysis was performed to extract
both the effective mechanical properties of the gyroids and the
associated properties of the parent Ni. This analysis suggested
that the uniaxial compressive strength of the double gyroids was
approximately equal to its hardness as the material is plastically
compressible with negligible indentation constraint effects. The
parent Ni was estimated to have the usual Young’s modulus of
bulk Ni (i.e. ∼240 GPa) but its yield strength was predicted to be
about 5.7 GPa, i.e. approaching the theoretical strength value of
Ni. This anomalously high strength was due to the fact that the
gyroid struts had a diameter of approximately 13nmandwere thus
essentially dislocation free. As a consequence, the compressive
strength ofNi nanodouble gyroidswas approximately equal to that
of fully dense high strength Ni alloys even though the Ni double
gyroids comprised approximately 60% porosity.

The self-assembly process employed here enables the relatively
fast and easy manufacture of nano double gyroid lattices. These
lattices have a bending-dominated topology, which is non-optimal
from a mechanical property viewpoint. However, self-assembly
enables very small cell sizes to be readily achieved and here
we have demonstrated that the plasticity size effect at these
small length scales more than compensates for the non-optimal
topology. In fact, Ni nano double gyroids have a higher strength to
weight ratio compared to Cu micro lattices with the near optimal
octet truss topology.
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