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Abstract. The spatial confinement of a fluctuation spectrum leads to forces at the confining boundaries.
While electromagnetic (EM) fluctuations lead to the well-known dispersion forces, the acoustic analogy has
widely been neglected. We show that the strength of the forces resulting from confined acoustic modes may
be of the same order of magnitude as van der Waals forces. Additionally, the predicted scaling behavior is
identical to the non-retarded case of the EM fluctuations. Our results suggest that dewetting experiments
using polymer films are strongly influenced by the acoustic dispersion forces.

PACS. 47.20.Ma Interfacial instability – 68.15.+e Liquid thin films – 05.40.-a Fluctuation phenomena,
random processes, noise, and Brownian motion

1 Introduction

The attraction of two conducting plates due to the EM
vacuum fluctuations was predicted by Casimir in 1948 [1].
This effect can be understood by considering the radiation
pressure exerted by the plane waves of the random EM
field [2]. Inside the cavity, modes with wavelengths larger
than twice the plate spacing are suppressed, leading to a
reduced density of states by the confinement. The differ-
ence in densities of states outside and inside the cavity
leads to an imbalance in radiation pressures exerted onto
the boundaries. This results in an attractive force between
the two plates. In addition, the mode spectrum inside is
discrete due to the large coherence length of the photons.
The small resulting net force has been measured recently
by Lamoreaux [3]. The concept introduced by Casimir is,
however, not limited to electromagnetic waves. The con-
finement of any fluctuating field leads to a modification
of the associated free energy and therefore to fluctua-
tion induced forces [4]. Examples of Casimir forces caused
by thermal fluctuations include finite-size corrections in
the free energy of binary-liquid mixtures near the critical
point, long-ranged correlations in superfluids and liquid
crystals and the fluctuations of counterions in charged flu-
ids [4]. In a macroscopic experiment, Larraza et al. [5] in-
troduced the notion of an acoustic Casimir effect by mea-
suring the force between two plates in an external sound
field. In the absence of an external source, Bschorr [6]
calculated a similar force based on the thermal pressure
fluctuations in air.
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A more general approach of EM phenomena in a con-
fined medium leads to the disjoining pressure [7,8] which
is known to destabilize thin liquid films [9]. Such dewet-
ting instabilities have been the focus of recent research
because of the fundamental interest in the interactions
of liquids near surfaces, but also because of the practi-
cal relevance of film stability for a variety of applications.
While several factors may contribute to the breakup of
thin films, most effort has been devoted to investigate the
effects of long-ranged van der Waals (vdW) forces [9–13].
Even though the mechanisms of film break-up by disper-
sive forces are well understood, quantitative agreement
between models and experiments is often lacking [11,12,
14]. Since the theory of vdW forces is well established [7,
8], such disagreements are indicative of additional driving
forces. Recent work demonstrates that electrostatic effects
[15–17] and radiation pressures due to temperature gra-
dients [18] may contribute to the destabilization of thin
films. Here, we describe a new destabilizing mechanism,
the acoustic analog to the Casimir pressure, or in more
general terms, the acoustic disjoining pressure. The re-
sulting dynamical instability is yet another variation of
spinodal dewetting with driving forces comparable to dis-
persive interactions.

2 Theoretical model

Dzyaloshinskii et al. [8] have estimated the interfacial pres-
sure of acoustic fluctuations (phonons). At low tempera-
tures (T = 0 K), analogous to the EM case, an interfa-
cial pressure pac ∝ hu/d4 is predicted, where d is the
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thickness of the confined medium and h is Planck’s con-
stant. This has to be compared to the EM case, where
pr ∝ hc/d4 for retarded or pnr ∝ hc/ad3 ∝ A/d3 for non-
retarded vdW forces. u and c are the velocities of sound
and light, a is a crossover length, and A is the Hamaker
constant. Since typical sound velocities are approximately
five orders of magnitude smaller than the speed of light,
it is clear that pac is negligible for T = 0 K. However, for
non-zero temperatures the influence of temperature is pre-
dominant. The criterion for classical behavior, hν � kT
(k Boltzmann’s constant) with ν ∝ u/d is for common
liquids very well satisfied, whereas in the EM case the op-
posite is true (ν ∝ c/d). From dimensional considerations
pac ∝ kT/d3 in the classical regime. Since kT is of the
same order of magnitude as typical Hamaker constants
A [19], it is obvious that acoustic fluctuations may con-
tribute to the destabilizing pressure at the film surfaces.
Furthermore, since pac has the same scaling behavior as
the non-retarded van der Waals force, it is experimentally
very difficult to distinguish the two effects.

We consider a free-standing liquid film (medium 2;
medium 1 refers to air or vacuum). To calculate the pres-
sure contribution from the acoustic fluctuations in liquids,
we follow the calculations of Debye [20] for the energy den-
sity of phonons in solids [21] in close analogy to the work
of Bschorr [6]. We assume an elastic liquid medium with
propagating longitudinal waves of sound velocity ui up
to the maximal Debye frequency ν

(i)
D = ui[9N/4πVi]1/3,

where N is Avogadro’s number and Vi the molar volume.
The radiation pressure exerted by plane waves incident
vertically on a perfectly reflecting surface is 2j/ui with
the energy flux j = uie and the phonon energy density e.
Since the coherence length of phonons in liquids is fairly
short, we can neglect interference effects and model the
mode spectrum as a superposition of orthogonal waves.
Therefore, the energy flux in one of the six orthogonal
directions is j/6, resulting in a phonon pressure

pac =
1
3
e . (1)

The energy per phonon is kT (assuming kT � hν). To
obtain the total energy density, the phonon energy has
to be weighted by the density of states in medium i,
dni = 4πν2/u3

i dν, and integrated over the relevant phonon
frequencies. Outside the film, phonons of all frequencies up
to νD exist. Inside the film, the cutoff wavelength λc = 2d
introduces a lower cutoff frequency

νc =
ui

λc
=

ui

2d
. (2)

The net radiation pressure (termed “acoustic Casimir ef-
fect” by Larraza et al. [5]) is readily calculated,

pac =
1
3

[∫ ν
(1)
D

0

kTdn1−
∫ ν

(2)
D

νc

kTdn2

]
=

πkT

18d3
+ p′0 , (3)

where p′0 is a pressure term that does not depend on film
thickness.

In the absence of any further effects (e.g., [15,18]),
the total pressure acting inside a film with thickness d is
given by

p (d) = p0 + pL + pdis + pac =

p0 − C1γ∂xxd +
A121

6πd3
+

πkT

18d3
, (4)

where ∂x denotes the partial derivative with respect to
the lateral coordinate x. p0 includes the d-independent
contributions from the atmosphere. The second term
describes the Laplace pressure with the surface tension
γ between medium 1 and 2. The disjoining pressure pdis

given by the third term is characterized by the Hamaker
constant A121 of medium 2 sandwiched by medium 1, for
non-retarded dispersion forces.

The Navier-Stokes and continuity equations for an in-
compressible fluid yields the equation of motion for the
lateral flux (in the x-direction) within the film

∂td = ∂x

[
d3

C2η
∂xp (d)

]
, (5)

where η is the zero-frequency viscosity. The constants C1

and C2 depend on the hydrodynamic boundary conditions
at the two film surfaces. For two free boundaries, assuming
a squeezing mode, we have C1 = 0.5 and C2 = 12 [9]. In
the derivation of equation (3), we assumed the interface
between medium 1 and 2 to be perfectly reflective. For the
case that medium 1 is a gas and medium 2 a liquid, this
condition is well satisfied.

A linear stability analysis determines whether the
interfacial fluctuations of the thermal capillary wave
spectrum with wave number q and amplitude δd0,
d (x, t) = d0 + δd0 exp (iqx + t/τ) are exponentially am-
plified (growth rate τ−1 > 0) or damped (τ−1 < 0). In
the long-wavelength approximation (δd0 � d � 1/q), the
dispersion relation is

1
τ

= − d3
0

C2η

[
γC1q

4 + ∂d (pdis + pac) q2
]

. (6)

The film is unstable when ∂d (pdis + pac) < 0 and all
modes with q < qc are amplified. The fastest growing
mode qm is then given by the maximum of equation (6),

q2
m =

1
2
q2
c = − 1

2γC1
∂d (pdis + pac) (7)

with the maximal growth rate

1
τm

=
C1

C2

γd3
0

η
q4
m . (8)

Since both pdis and pac have the same dependence on d, the
scaling of qm with d is also identical. Thus, the force bal-
ance between the dispersive and acoustic terms depends
exclusively on their absolute strength. It is therefore im-
portant to explore several corrections and higher-order ef-
fects that may contribute to pac.
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While for most experimental systems the temperature
is larger than the Debye temperature ΘD = hνD/k (for
polystyrene ΘD ≈ 100 K), the classical limit T � ΘD

needs to be verified. For T ≤ ΘD, the quantum-statistical
character of the phonon energy has to be taken into
account. Using x = hν/kT , the energy per phonon is
given by

hν

e
hν
kT − 1

= kT

[
x

ex − 1

]
=

kT

[
1 − 1

2
x +

∞∑
n=1

(−1)n+1 Bnx2n

(2n)!

]
. (9)

The series converges for |x|<2π, where Bn = 2(2n)!ζ(2n)/
(2π)2n are the Bernoulli numbers with the Riemann zeta-
function ζ(z). Using equation (9) to calculate the acoustic
pressure in equation (3), we obtain

pac = p′0 (ΘD/T ) +
πkT

18d3

[
1 − 3

16
hu

kTd

+
∞∑

n=1

6(−1)n+1ζ(2n)
(2n + 3)(4π)2n

(
hu

kTd

)2n
]

. (10)

The sum converges rapidly for hu
kTd ≤ 1. For

u = O(1000) m/s, T = O(300) K, and d ≥ 1 nm,
hu

kTd ≤ O(0.1) and only the first term in the expansion
has to be considered. Down to very thin films (d ≈ 1 nm)
this correction is less than 5%. Therefore, even for
temperatures below ΘD where the quantum statistics is
important, the effect is still dominated by kT .

The additivity of pdis and pac in equation (4) implies
the assumption that thermal and EM fluctuations are not
correlated. For dielectric materials there is no direct cou-
pling between the EM and vibrational molecular modes.
While higher-order cross-correlations have to be worked
out in a more detailed model, we restrict our treatment to
the approximation, in which the EM and Debye density
of states are decoupled.

So far, we have restricted our model to free-standing
films. Since experiments on free-standing films are diffi-
cult to perform [14], most experiments consider supported
films (medium 2 (liquid) sandwiched between medium 1
(air) and medium 3 (substrate)) [11–13]. The theoretical
framework for supported films is similar to the case of
free-standing films: in equation (4), A121 has to be re-
placed by A123 and the changed hydrodynamic boundary
condition at the solid substrate changes the prefactors in
equations (4-8) to C1 = 1 and C2 = 3 [10].

In addition, two further effects arise due to the elas-
tic coupling of the film to an external medium. First, the
coupling modifies the mode spectrum in the film. This
changes primarily the lower cutoff νc in equation (3), to
allow lower-frequency modes. Effective elastic coupling re-
quires similar elastic moduli for medium 2 and 3. In typ-
ical experimental systems such as polystyrene on silicon,
however, the elastic moduli differ by two orders of mag-
nitude (≈ 3GPa and ≈ 100GPa for polystyrene and sili-

con, respectively). Second, due to the finite difference be-
tween the acoustic impedances of the two media, Z = ρiui

(with the density ρi of medium i), a finite reflectivity
R23 = [(Z1 − Z2)/(Z1 + Z2)]

2
< 1 between medium 2

and 3 has to be introduced. For polystyrene on silicon,
R23 ≈ 0.7. Since R23 < 1, pac should be somewhat re-
duced in this case, but remain comparable to pdis.

For dewetting experiments employing polymer films,
the frequency-dependent rheology of macromolecular
melts has to be taken into account. Above (but close to
the) glass transition temperature, polymer melts are vis-
cous liquids in the zero-frequency limit, but are glassy at
the the relevant phonon frequencies [22]. The density of
states for glasses deviates from the Debye theory, show-
ing in the lower THz region a positive anomaly (“boson”
peak) [23]. However, the cutoff frequency νc lies below this
range and the boson peak only changes the constant p′0 in
equation (3) [24].

The dissipation of phonons takes place in the form of
phonon absorption and re-emission, possibly with a differ-
ent direction and frequency. However, the density of states
is on the average always and everywhere fulfilled, based on
the principle of detailed balance in thermal equilibrium.
In general, the finite reflectivities are frequency depen-
dent [25]. Below several hundred GHz, phonons behave
acoustically and exert a large radiation pressure, while
above this frequency range diffusive behavior is observed
associated with low reflectivities. Thus, thermal equilibra-
tion of the film is ensured by the high-frequency phonons.
The effect described here is, however, caused by the ex-
clusion of a part of the low-frequency spectrum where the
acoustic behavior dominates.

3 Discussion

It is instructive to predict the effect of the acoustic dis-
joining pressure in systems that can be studied exper-
imentally. As a first example, we consider polystyrene
(PS) films on a glass substrate, at T = 150 ◦C. In Fig-
ure 1, the predicted wavelength of a dewetting instability
(λ = 2π/qm) is plotted versus the film thickness. The
dashed line is based on vdW forces (pdis) only, while the
solid line contains contributions of both vdW and acous-
tic forces (pdis + pac). Since the range in film thicknesses
is larger than the crossover length dc, we use an empiri-
cal expression for the derivative of the disjoining pressure
∂dpdis:

∂dpdis =
1
2

[
(∂dpnr + ∂dpr)

− (∂dpnr − ∂dpr) tanh
(

d − dc

w

) ]
, (11)

where pnr = A123/6πd3 and pr = B123/d4 for non-
retarded and retarded disjoining pressures, respectively.
With dc = 43 nm and w = 20 nm, the crossover from non-
retarded to retarded vdW forces causes a rapid increase
in λ for d > 40 nm. The added contribution of pac has two
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Fig. 1. Calculated instability wavelength λ vs. film thickness
d for PS (γ = 30 mN/m) on glass, for T = 150 ◦C. The dashed
line is the contribution of vdW forces, exhibiting a crossover
from the destabilizing non-retarded (A = 1.8 · 10−20 J [19]) to
the stabilizing retarded (B = −2.2 · 10−29 Jm [8,26]) regime,
for dc = 43 nm and w = 20 nm in equation (11). The solid line
contains both pdis and pac terms (Eq. (7)).

consequences: 1) The instability wavelength is lower. Data
analysis considering only pdis would result in a “Hamaker
constant” that is too high. 2) If both pdis and pac are taken
into account, the crossover behavior seen for vdW forces
is suppressed, since the effect of pdis is negligible for large
values of d. While using a pure vdW model may lead to a
misinterpretation of the data (i.e. the non-retarded vdW
forces seemingly extend to very large values of d), the
crossover to retarded vdW forces should provide a crite-
rion, by which the effect of the acoustic disjoining pressure
can be detected in an experiment.

As a second example, we re-analyze the data from See-
mann et al. [13] (Fig. 2). They studied the stability of PS
films on a Si wafer covered by a � = 2.4 nm thick oxide
layer. The two-layer sandwich (inset in Fig. 2) requires a
correction of the non-retarded disjoining pressure:

pnr =
ASiOx

6πd3
− ASiOx

− ASi

6π(d + �)3
, (12)

where ASiOx and ASi are the A123 Hamaker constants for
SiOx and Si substrates, respectively. The dashed and solid
lines in Figure 2 are the predictions from equation (11),
with pnr from equation (12) and a value of B123 = BSi =
−7.1 · 10−29 Jm [8,26].

Since the Hamaker constants of Si and SiOx have op-
posite signs, a spinodal instability is observed only for thin
films. While the vdW theory predicts a stabilization of the
film (i.e. a divergence of λ, dashed line in Fig. 2), the ex-
perimental divergence lies at a value of d, which is too
large. The prediction of equation (7) on the other hand
(excluding the higher-order effects described above), is a
better description of the experimental data. For this sys-
tem, an interesting prediction can be made. If the film
thickness is larger than 100 nm a re-entrant instability
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Fig. 2. Instability wavelength λ vs. film thickness d for PS
(γ = 30.8 mN/m) on a SiOx covered Si substrate (see inset).
The circles are data from [13]. The dashed line is a predic-
tion (Eq. (7)) based exclusively on non-retarded vdW forces
(Eq. (12), with ASiOx = 1.8 ·10−20 J, ASi = −2.2 ·10−19 J [13]).
The solid line takes both pdis (Eq. (11)) and pac into account.
For values of d > 100 nm, pac dominates over the much weaker
retarded vdW forces (BSi = −7.1 · 10−29 Jm, dc = 8 nm,
w = 1 nm), leading to a re-entrant instability (upper right
corner).

should occur. There, the stabilizing effect of the vdW
forces becomes negligible, leading to a dominance of pac

in equation (7). While re-entrant film destabilization may
not be measurable in this specific experimental system
(the film will break up due to heterogeneous nucleation
first [13]), it should in principle be experimentally acces-
sible, providing a further possibility to verify our theory.

While attractive forces stemming from a geometric
confinement of a fluctuating medium are generic and ap-
ply to any fluctuating field, the range of these forces is
related to the correlation length of the fluctuations [4]. In
the case of simple liquids, where the mean free path of
phonons is short (∼ 1 Å), attractive forces stemming from
the exclusion of part of the phonon spectrum should be
limited to extremely thin films and are therefore negligi-
ble. The glassy behavior of polymer melts at high frequen-
cies [22], however, leads to much larger phonon mean-free-
path lengths (∼ 1µm) [27] and therefore to a measurable
acoustic disjoining pressure in dewetting experiments that
employ ∼ 100 nm thick polymer films.

The only liquid thin film system other than polymer
melts, in which the acoustic disjoining pressure could also
play a role, is liquid helium. Only in cryogenic liquids is the
phonon correlation length larger than a molecular dimen-
sion. The main difference to polymer melts is, however,
the role of the temperature. At T ≈ 0 K, phonons (and
therefore pac) obey quantum statistics, while for T > ΘD

pac ∝ kT . At very low temperatures (as considered by
Dzyaloshinskii and co-workers [8]) pac � pdis because of
the quantum statistic where pac ∝ hu (see above).

In conclusion, we have shown that forces in thin poly-
mer films stemming from non-electromagnetic fluctuations
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are predicted to contribute equally to film instabilities as
the EM dispersion forces and have the same scaling be-
havior (compared to the non-retarded EM case). Under
certain conditions, the acoustic disjoining pressure may
even dominate the EM analog.

Useful discussions with R. Blossey and M. Morariu are grate-
fully acknowledged. This work was partially funded by the
Deutsche Forschungs Gemeinschaft (DFG) through the Son-
derforschungsbereich 513 and the Dutch “Stichting voor Fun-
damenteel Onderzoek der Materie” (FOM).

References

1. H.B.G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948).
2. P.W. Milonni, R.J. Cook, M.E. Goggin, Phys. Rev. A 38,

1621 (1988).
3. S.K. Lamoreaux, Phys. Rev. Lett. 78, 5 (1997).
4. M. Kadar, R. Golestanian, Rev. Mod. Phys. 71, 1233

(1999).
5. A. Larraza, Am. J. Phys. 67, 1028 (1999).
6. O. Bschorr, J. Acoust. Soc. Am. 106, 3730 (1999).
7. E.M. Lifshitz, J. Exp. Theor. Phys. 29, 94 (1955).
8. I.E. Dzyaloshinskii, E.M. Lifshitz, L.P. Piaevskii, Adv.

Phys. 10, 165 (1961).
9. A. Vrij, Faraday Discuss. Chem. Soc. 42, 23 (1966).

10. F. Brochard, P.-G. de Gennes, H. Hervet, C. Redon, Can.
J. Phys. 68, 1084 (1990).

11. G. Reiter, Phys. Rev. Lett. 68, 75 (1992).
12. A. Sharma, G. Reiter, J. Colloid Interface Sci. 178, 383

(1996).
13. R. Seemann, S. Herminghaus, K. Jacobs, Phys. Rev. Lett.

86, 5534 (2001).

14. K. Dalnoki-Veress, B.G. Nickel, J.R. Dutcher, Phys. Rev.
Lett. 82, 1486 (1999).
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